Polymer Synthesis and Reactions

Diels–Alder polymerization: a versatile synthetic method toward functional polyphenylenes, ladder polymers and graphene nanoribbons

Abstract

The Diels–Alder reaction has been widely used in synthetic organic chemistry since its discovery in 1928. The catalyst-free nature, functional group tolerance and high efficiency of the Diels–Alder reaction also make it promising for the fabrication of functional polymeric materials. In particular, a large variety of functional polyphenylenes (polymer structures mainly consisting of phenylenes) and ladder polymers (double-stranded polymers with periodic linkages connecting the strands) have been obtained by this method, offering potential applications such as polymer electrolyte membranes and gas separation. More recently, tailor-made polyphenylenes prepared by Diels–Alder polymerization have been used as precursors of structurally well-defined graphene nanoribbons (ribbon-shaped nanometer-wide graphene segments) with different widths, exhibiting long lengths (>600 nm) and tunable electronic bandgaps. This article provides a comprehensive review of the use of Diels–Alder polymerization to build functional polyphenylenes, ladder polymers and graphene nanoribbons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Diels, O. & Alder, K. Synthesen in der hydroaromatischen Reihe. Justus Liebig's Ann. Chem. 460, 98–122 (1928).

    CAS  Article  Google Scholar 

  2. 2

    Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Ramdas, M. R., Kumar, K. S. S. & Nair, C. P. R. Click polymerizations: encouraging route for shape memory polymers. Mater. Lett. 172, 216–221 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Knall, A. C. & Slugovc, C. Inverse electron demand Diels–Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev 42, 5131–5142 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Nandivada, H., Jiang, X. & Lahann, J. Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater. 19, 2197–2208 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Tasdelen, M. A. Diels–Alder ‘click’ reactions: recent applications in polymer and material science. Polym. Chem. 2, 2133 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Hizal, G., Tunca, U. & Sanyal, A. Discrete macromolecular constructs via the Diels–Alder ‘Click’ reaction. J. Polym. Sci. Part A 49, 4103–4120 (2011).

    CAS  Google Scholar 

  8. 8

    Kovacic, P. & Kyriakis, A. Polymerization of benzene top-polyphenyl by aluminum chloride-cupric chloride. J. Am. Chem. Soc. 85, 454–458 (1963).

    CAS  Article  Google Scholar 

  9. 9

    Berresheim, A. J., Müller, M. & Müllen, K. Polyphenylene nanostructures. Chem. Rev. 99, 1747–1786 (1999).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Watson, M. D., Fechtenkötter, A. & Müllen, K. Big is beautiful—‘aromaticity’ revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Hammer, B. A. G. & Müllen, K. Dimensional evolution of polyphenylenes: expanding in all directions. Chem. Rev 116, 2103–2140 (2016).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Bieri, M., Treier, M., Cai, J., Aït-Mansour, K., Ruffieux, P., Gröning, O., Gröning, P., Kastler, M., Rieger, R., Feng, X., Müllen, K. & Fasel, R. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. (Camb) 6919–6921 (2009).

  13. 13

    Newby, J. J., Liu, C.-P., Müller, C. W., James, W. H., Buchanan, E. G., Lee, H. D. & Zwier, T. S. Spectroscopy and photophysics of structural isomers of naphthalene:z-phenylvinylacetylene. J. Phys. Chem. A 114, 3190–3198 (2010).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Türp, D., Nguyen, T.-T.-T., Baumgarten, M. & Müllen, K. Uniquely versatile: nano-site defined materials based on polyphenylene dendrimers. N. J. Chem. 36, 282–298 (2012).

    Article  Google Scholar 

  15. 15

    Hammer, B. A., Moritz, R., Stangenberg, R., Baumgarten, M. & Müllen, K. The polar side of polyphenylene dendrimers. Chem. Soc. Rev. 44, 4072–4090 (2015).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Scherf, U. & Müllen, K. Polyarylenes and poly(arylenevinylenes), 7. A soluble ladder polymer via bridging of functionalized poly(p-phenylene)-precursors. Die Makromol. Chem. Rapid Commun. 12, 489–497 (1991).

    CAS  Article  Google Scholar 

  17. 17

    Jones, R. G., Wilks, E. S., Metanomski, W. V., Kahovec, J., Hess, M., Stepto, R. & Kitayama, T. Compedium of Polymer Terminology and Nomenclature IUPAC Recommendations, (The Royal Society of Chemistry, Cambridge, UK, 2009).

    Google Scholar 

  18. 18

    Lee, J., Kalin, A. J., Yuan, T., Al-Hashimi, M. & Fang, L. Fully conjugated ladder polymers. Chem. Sci. 8, 2503–2521 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Grozema, F. C., van Duijnen, P. T., Berlin, Y. A., Ratner, M. A. & Siebbeles, L. D. A. Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J. Phys. Chem. B 106, 7791–7795 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Prins, P., Grozema, F. C., Schins, J. M., Patil, S., Scherf, U. & Siebbeles, L. D. A. High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys. Rev. Lett. 96, 146601 (2006).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Samiullah, M., Moghe, D., Scherf, U. & Guha, S. Diffusion length of triplet excitons in organic semiconductors. Phys. Rev. B 82, 205211 (2010).

    Article  CAS  Google Scholar 

  22. 22

    Grimsdale, A. C. & Müllen, K. Polyphenylene-type emissive materials: poly(para-phenylene)s. Polyfluorenes Ladder Polymers 199, 1–82 (2006).

    CAS  Google Scholar 

  23. 23

    Bheemireddy, S. R., Hautzinger, M. P., Li, T., Lee, B. & Plunkett, K. N. Conjugated ladder polymers by a cyclopentannulation polymerization. J. Am. Chem. Soc. 139, 5801–5807 (2017).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Scherf, U. Ladder-type materials. J. Mater. Chem. 9, 1853–1864 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Schlüter, A.-D. Ladder polymers: the new generation. Adv. Mater. 3, 282–291 (1991).

    Article  Google Scholar 

  26. 26

    Narita, A., Wang, X. Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Narita, A., Feng, X. & Müllen, K. Bottom-up synthesis of chemically precise graphene nanoribbons. Chem. Rec. 15, 295–309 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Yazyev, O. V. A guide to the design of electronic properties of graphene nanoribbons. Accounts Chem. Res. 46, 2319–2328 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Wang, X. R., Shi, Y. & Zhang, R. Field-effect transistors based on two-dimensional materials for logic applications. Chin. Phys. B 22, 098505 (2013).

    Article  CAS  Google Scholar 

  34. 34

    Marmolejo-Tejada, J. M. & Velasco-Medina, J. Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016).

    CAS  Article  Google Scholar 

  35. 35

    Osella, S., Narita, A., Schwab, M. G., Hernandez, Y., Feng, X., Müllen, K. & Beljonne, D. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design. ACS Nano 6, 5539–5548 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Villegas, C. E., Mendonca, P. B. & Rocha, A. R. Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells. Sci. Rep. UK 4, 6579 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett 98, 206805 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38

    Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Phys. E 40, 228–232 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. 40

    Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K. & Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–U875 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Gandini, A. The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Progr. Polym. Sci. 38, 1–29 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Cava, M. P. & Deana, A. A. Condensed cyclobutane aromatic compounds. VI. The pyrolysis of 1,3-dihydroisothianaphthene-2,2-dioxide: a new synthesis of benzocyclobutene1. J. Am. Chem. Soc. 81, 4266–4268 (1959).

    CAS  Article  Google Scholar 

  44. 44

    Goodall, G. W. & Hayes, W. Advances in cycloaddition polymerizations. Chem. Soc. Rev. 35, 280–312 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Ried, W. & Bönnighausen, K. H. Diensynthesen mit Diinen. Chem. Beri. 93, 1769–1773 (1960).

    CAS  Article  Google Scholar 

  46. 46

    Fieser, L. F. Hexaphenylbenzene. Org. Synth. 46, 44 (1966).

    CAS  Article  Google Scholar 

  47. 47

    Stille, J. K., Harris, F. W., Rakutis, R. O. & Mukamal, H. Diels–Alder polymerizations: polymers containing controlled aromatic segments. J. Polym. Sci. Part B 4, 791–793 (1966).

    CAS  Article  Google Scholar 

  48. 48

    Ried, W. & Freitag, D. Synthese von polyphenyl-poly-phenylen. Naturwissenschaften 53, 306–306 (1966).

    CAS  Article  Google Scholar 

  49. 49

    Mukamal, H., Harris, F. W. & Stille, J. K. Diels–Alder polymers. III. Polymers containing phenylated phenylene units. J Polym Sci Part A-1 5, 2721–2729 (1967).

    CAS  Article  Google Scholar 

  50. 50

    Stille, J. K., Rakutis, R. O., Mukamal, H. & Harris, F. W. Diels–Alder polymerizations. IV. Polymers containing short phenylene blocks connected by alkylene units. Macromolecules 1, 431–436 (1968).

    CAS  Article  Google Scholar 

  51. 51

    Stille, J. K. & Noren, G. K. Diels–Alder polymers: polyphenylenes containing alternating phenylene and triphenylphenylene units (1). J. Polym. Sci. Part B 7, 525–527 (1969).

    CAS  Article  Google Scholar 

  52. 52

    Wrasidlo, W. & Augl, J. M. Preparation of poly(octaphenyl-tetraphenylene). J. Polym. Sci. Part B 7, 519–523 (1969).

    CAS  Article  Google Scholar 

  53. 53

    Speight, J. G., Kovacic, P. & Koch, F. W. Synthesis and properties of polyphenyls and polyphenylenes. J. Macromol. Sci. Part C 5, 295–386 (1971).

    CAS  Article  Google Scholar 

  54. 54

    Noren, G. K. & Stille, J. K. Polyphenylenes. J. Polym. Sci. Macromol. Rev. 5, 385–430 (1971).

    CAS  Article  Google Scholar 

  55. 55

    Kumar, U. & Neenan, T. X. Diels–Alder polymerization between bis(cyclopentadienones) and acetylenes. A versatile route to new highly aromatic polymers. Macromolecules 28, 124–130 (1995).

    CAS  Article  Google Scholar 

  56. 56

    Suh, D., Jung, S.-H., Park, S.-J., Kim, D. & Cho, H.-N. Synthesis and properties of highly phenyl-substituted fluorene copolymers containing hole and electron transporting moieties via Diels–Alder Polymerization. Mol. Crystals Liquid Crystals 424, 159–165 (2004).

    CAS  Article  Google Scholar 

  57. 57

    Kerry, F. G. Industrial Gas Handbook: Gas Separation and Purification, Taylor & Francis Group, LLC, Boca Raton, FL, USA, (2006).

    Google Scholar 

  58. 58

    Largier, T., Huang, F. & Cornelius, C. J. Homopolymer and multi-block Diels–Alder polyphenylenes: synthesis, physical properties, X-ray diffraction, and gas transport. Eur. Polym. J. 89, 301–310 (2017).

    CAS  Article  Google Scholar 

  59. 59

    Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

    CAS  Article  Google Scholar 

  60. 60

    Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011).

    CAS  Article  Google Scholar 

  61. 61

    Kreuer, K. D. I. Conducting membranes for fuel cells and other electrochemical devices. Chem. Mater. 26, 361–380 (2014).

    CAS  Article  Google Scholar 

  62. 62

    Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. & McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Fujimoto, C. H., Hickner, M. A., Cornelius, C. J. & Loy, D. A. Ionomeric poly(phenylene) prepared by Diels−Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules 38, 5010–5016 (2005).

    CAS  Article  Google Scholar 

  64. 64

    Hickner, M. A., Fujimoto, C. H. & Cornelius, C. J. Transport in sulfonated poly(phenylene)s: proton conductivity, permeability, and the state of water. Polymer 47, 4238–4244 (2006).

    CAS  Article  Google Scholar 

  65. 65

    Hibbs, M. R., Fujimoto, C. H. & Cornelius, C. J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42, 8316–8321 (2009).

    CAS  Article  Google Scholar 

  66. 66

    Stanis, R. J., Yaklin, M. A., Cornelius, C. J., Takatera, T., Umemoto, A., Ambrosini, A. & Fujimoto, C. H. Evaluation of hydrogen and methanol fuel cell performance of sulfonated diels alder poly(phenylene) membranes. J. Power Sources 195, 104–110 (2010).

    CAS  Article  Google Scholar 

  67. 67

    Largier, T. D., Wang, D., Mueller, J. & Cornelius, C. J. Improving electrodialysis based water desalination using a sulfonated Diels–Alder poly(phenylene). J. Membr. Sci. 531, 103–110 (2017).

    CAS  Article  Google Scholar 

  68. 68

    Fujimoto, C., Kim, S., Stains, R., Wei, X. L., Li, L. Y. & Yang, Z. G. Vanadium redox flow battery efficiency and durability studies of sulfonated Diels–Alder poly(phenylene)s. Electrochem. Commun. 20, 48–51 (2012).

    CAS  Article  Google Scholar 

  69. 69

    Lim, Y., Lee, H., Lee, S., Jang, H., Hossain, M. A., Cho, Y., Kim, T., Hong, Y. & Kim, W. Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application. Electrochim. Acta 119, 16–23 (2014).

    CAS  Article  Google Scholar 

  70. 70

    Skalski, T. J., Britton, B., Peckham, T. J. & Holdcroft, S. Structurally-defined, sulfo-phenylated, oligophenylenes and polyphenylenes. J. Am. Chem. Soc. 137, 12223–12226 (2015).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Adamski, M., Skalski, T. J. G., Britton, B., Peckham, T. J., Metzler, L. & Holdcroft, S. Highly stable, low gas crossover, proton-conducting phenylated polyphenylenes. Angew. Chem. Int. Ed. 56, 9058–9061 (2017).

    CAS  Article  Google Scholar 

  72. 72

    Voit, B. I. & Lederer, A. Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects. Chem. Rev. 109, 5924–5973 (2009).

    CAS  Article  Google Scholar 

  73. 73

    Morgenroth, F. & Müllen, K. Dendritic and hyperbranched polyphenylenes via a simple Diels–Alder route. Tetrahedron 53, 15349–15366 (1997).

    CAS  Article  Google Scholar 

  74. 74

    Zhi, L., Wu, J., Li, J., Stepputat, M., Kolb, U. & Müllen, K. Diels–Alder reactions of tetraphenylcyclopentadienones in nanochannels: fabrication of nanotubes from hyperbranched polyphenylenes. Adv. Mater. 17, 1492–1496 (2005).

    CAS  Article  Google Scholar 

  75. 75

    Stumpe, K., Komber, H. & Voit, B. I. Novel branched polyphenylenes based on A2/B3 and AB2/AB monomers via Diels–Alder cycloaddition. Macromol. Chem. Phys. 207, 1825–1833 (2006).

    CAS  Article  Google Scholar 

  76. 76

    Kuchkina, N. V., Zinatullina, M. S., Serkova, E. S., Vlasov, P. S., Peregudov, A. S. & Shifrina, Z. B. Hyperbranched pyridylphenylene polymers based on the first-generation dendrimer as a multifunctional monomer. RSC Adv. 5, 99510–99516 (2015).

    CAS  Article  Google Scholar 

  77. 77

    Bailey, W. J., Economy, J. & Hermes, M. E. Polymers. IV. Polymeric Diels–Alder reactions. J. Org. Chem. 27, 3295–3299 (1962).

    CAS  Article  Google Scholar 

  78. 78

    Kohnke, F. H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. Molecular belts and collars in the making: a hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. 26, 892–894 (1987).

    Article  Google Scholar 

  79. 79

    Wegener, S. & Müllen, K. New ladder polymers via repetitive Diels–Alder reaction under high pressure. Macromolecules 26, 3037–3040 (1993).

    CAS  Article  Google Scholar 

  80. 80

    Wegener, S. & Müllen, K. 5,6,7,8-Tetramethylenebicyclo[2.2.2]oct-2-ene as ‘Bis(diene)’ in repetitive Diels–Alder reactions. Chem. Ber. 124, 2101–2103 (1991).

    CAS  Article  Google Scholar 

  81. 81

    Pollmann, M., Wohlfarth, W., Müllen, K. & Lex, J. 1,2,5,6-Tetra-exo-methylenecynclooctane and [2.2]-(2,3)-furanophane as bis-diene components in Diels–Alder reactions. Tetrahedron Lett. 31, 2701–2704 (1990).

    CAS  Article  Google Scholar 

  82. 82

    Pollmann, M. & Müllen, K. Semiflexible ribbon-type structures via repetitive Diels–Alder cycloaddition. Cage formation versus polymerization. J. Am. Chem. Soc. 116, 2318–2323 (1994).

    CAS  Article  Google Scholar 

  83. 83

    Stille, J. K., Noren, G. K. & Green, L. Hydrocarbon ladder aromatics from a Diels–Alder reaction. J. Polym. Sci. Part A-1 8, 2245–2254 (1970).

    CAS  Article  Google Scholar 

  84. 84

    Schlüter, A. D., Löffler, M. & Enkelmann, V. Synthesis of a fully unsaturated all-carbon ladder polymer. Nature 368, 831–834 (1994).

    Article  Google Scholar 

  85. 85

    Blatter, K. & Schlüter, A. D. Ribbon-shaped structures via repetitive Diels–Alder reaction—a polycatafusene. Macromolecules 22, 3506–3508 (1989).

    CAS  Article  Google Scholar 

  86. 86

    Vogel, T., Blatter, K. & Schlüter, A. D. A soluble polyacene precursor. Makromol. Chem. Rapid 10, 427–430 (1989).

    CAS  Article  Google Scholar 

  87. 87

    Löffler, M., Schlüter, A. D., Gessler, K., Saenger, W., Toussaint, J. M. & Brédas, J. L. Synthesis of a fully unsaturated molecular board. Angew. Chem. Int. Ed. 33, 2209–2212 (1994).

    Article  Google Scholar 

  88. 88

    Luo, J. & Hart, H. Bisannelation with a benzo[1,2-c:4,5-c']difuran equivalent: a new route to linear acene derivatives. J. Org. Chem. 53, 1341–1343 (1988).

    CAS  Article  Google Scholar 

  89. 89

    Zhao, D. & Swager, T. M. Conjugated polymers containing large soluble diethynyl iptycenes. Org. Lett. 7, 4357–4360 (2005).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Hopf, H. Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives, (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  91. 91

    Thomas, S. W. III, Long, T. M., Pate, B. D., Kline, S. R., Thomas, E. L. & Swager, T. M. perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). J. Am. Chem. Soc. 127, 17976–17977 (2005).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Chen, Z., Amara, J. P., Thomas, S. W. & Swager, T. M. Synthesis of a novel poly(iptycene) ladder polymer. Macromolecules 39, 3202–3209 (2006).

    CAS  Article  Google Scholar 

  93. 93

    Scholl, R. & Mansfeld, J. meso-Benzdianthron (Helianthron),meso-Naphthodianthron, und ein neuer Weg zum Flavanthren. Ber. Dtsch. Chem. 43, 1734–1746 (1910).

    CAS  Article  Google Scholar 

  94. 94

    Clar, E. & Ironside, C.T. Hexabenzocoronene. Proc. Chem. Soc. 150–150 (1958)

  95. 95

    Grzybowski, M., Skonieczny, K., Butenschön, H. & Gryko, D.T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Edit. 52, 9900–9930 (2013)

  96. 96

    Shifrina, Z.B., Averina, M.S., Rusanov, A.L., Wagner, M. & Müllen, K. Branched polyphenylenes by repetitive Diels-Alder cycloaddition. Macromolecules 33, 3525–3529 (2000)

  97. 97

    Wu, J. S., Gherghel, L., Watson, M. D., Li, J. X., Wang, Z. H., Simpson, C. D., Kolb, U. & Mullen, K. From branched polyphenylenes to graphite ribbons. Macromolecules 36, 7082–7089 (2003).

    CAS  Article  Google Scholar 

  98. 98

    Narita, A., Feng, X., Hernandez, Y., Jensen, S. A., Bonn, M., Yang, H., Verzhbitskiy, I. A., Casiraghi, C., Hansen, M. R., Koch, A. H., Fytas, G., Ivasenko, O., Li, B., Mali, K. S., Balandina, T., Mahesh, S., De Feyter, S. & Mullen, K. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Zhao, S., Rondin, L., Delport, G., Voisin, C., Beser, U., Hu, Y., Feng, X., Mullen, K., Narita, A., Campidelli, S. & Lauret, J. S. Fluorescence from graphene nanoribbons of well-defined structure. Carbon 119, 235–240 (2017).

    CAS  Article  Google Scholar 

  100. 100

    Soavi, G., Dal Conte, S., Manzoni, C., Viola, D., Narita, A., Hu, Y., Feng, X., Hohenester, U., Molinari, E., Prezzi, D., Mullen, K. & Cerullo, G. Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nat. Commun. 7, 11010 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Konnerth, R., Cervetti, C., Narita, A., Feng, X., Mullen, K., Hoyer, A., Burghard, M., Kern, K., Dressel, M. & Bogani, L. Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale 7, 12807–12811 (2015).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Abbas, A. N., Liu, G., Narita, A., Orosco, M., Feng, X., Mullen, K. & Zhou, C. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 136, 7555–7558 (2014).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Zschieschang, U., Klauk, H., Mueller, I. B., Strudwick, A. J., Hintermann, T., Schwab, M. G., Narita, A., Feng, X. L., Muellen, K. & Weitz, R. T. Electrical characteristics of field-effect transistors based on chemically synthesized graphene nanoribbons. Adv. Electron Mater. 1, 1400010 (2015).

    Article  CAS  Google Scholar 

  104. 104

    Fantuzzi, P., Martini, L., Candini, A., Corradini, V., del Pennino, U., Hu, Y., Feng, X., Mullen, K., Narita, A. & Affronte, M. Fabrication of three terminal devices by electrospray deposition of graphene nanoribbons. Carbon 104, 112–118 (2016).

    CAS  Article  Google Scholar 

  105. 105

    Llinas, J. P., Fairbrother, A., Borin Barin, G., Shi, W., Lee, K., Wu, S., Yong Choi, B., Braganza, R., Lear, J., Kau, N., Choi, W., Chen, C., Pedramrazi, Z., Dumslaff, T., Narita, A., Feng, X., Müllen, K., Fischer, F., Zettl, A., Ruffieux, P., Yablonovitch, E., Crommie, M., Fasel, R. & Bokor, J. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

  106. 106

    Chen, Z. P., Zhang, W., Palma, C. A., Rizzini, A. L., Liu, B. L., Abbas, A., Richter, N., Martini, L., Wang, X. Y., Cavani, N., Lu, H., Mishra, N., Coletti, C., Berger, R., Klappenberger, F., Klaui, M., Candini, A., Affronte, M., Zhou, C. W., De Renzi, V., del Pennino, U., Barth, J. V., Rader, H. J., Narita, A., Feng, X. L. & Mullen, K. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Tan, Y. Z., Yang, B., Parvez, K., Narita, A., Osella, S., Beljonne, D., Feng, X. & Mullen, K. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat. Commun. 4, 2646 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  108. 108

    Wu, M., Wang, J., Wu, Z. X., Xin, H. L. L. & Wang, D. L. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 3, 7727–7731 (2015).

    CAS  Article  Google Scholar 

  109. 109

    Narita, A., Verzhbitskiy, I. A., Frederickx, W., Mali, K. S., Jensen, S. A., Hansen, M. R., Bonn, M., De Feyter, S., Casiraghi, C., Feng, X. & Mullen, K. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. Acs Nano 8, 11622–11630 (2014).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Verzhbitskiy, I. A., Corato, M. D., Ruini, A., Molinari, E., Narita, A., Hu, Y., Schwab, M. G., Bruna, M., Yoon, D., Milana, S., Feng, X., Mullen, K., Ferrari, A. C., Casiraghi, C. & Prezzi, D. Raman fingerprints of atomically precise graphene nanoribbons. Nano Lett 16, 3442–3447 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Ivanov, I., Hu, Y., Osella, S., Beser, U., Wang, H. I., Beljonne, D., Narita, A., Mullen, K., Turchinovich, D. & Bonn, M. Role of edge engineering in photoconductivity of graphene nanoribbons. J. Am. Chem. Soc. 139, 7982–7988 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112

    Dibble, D. J., Park, Y. S., Mazaheripour, A., Umerani, M. J., Ziller, J. W. & Gorodetsky, A. A. Synthesis of polybenzoquinolines as precursors for nitrogen-doped graphene nanoribbons. Angew. Chem. Int. Ed. 54, 5883–5887 (2015).

    CAS  Article  Google Scholar 

  113. 113

    Dossel, L., Gherghel, L., Feng, X. L. & Müllen, K. Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. 50, 2540–2543 (2011).

    Article  CAS  Google Scholar 

  114. 114

    Kim, K. T., Jung, J. W. & Jo, W. H. Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon 63, 202–209 (2013).

    CAS  Article  Google Scholar 

  115. 115

    Kim, K. T., Lee, J. W. & Jo, W. H. Charge-transport tuning of solution-processable graphene nanoribbons by substitutional nitrogen doping. Macromol. Chem. Phys. 214, 2768–2773 (2013).

    CAS  Article  Google Scholar 

  116. 116

    Schwab, M. G., Narita, A., Osella, S., Hu, Y. B., Maghsoumi, A., Mavrinsky, A., Pisula, W., Castiglioni, C., Tommasini, M., Beljonne, D., Feng, X. L. & Mullen, K. Bottom-up synthesis of necklace-like graphene nanoribbons. Chem. Asian J. 10, 2134–2138 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117

    Li, G., Yoon, K. Y., Zhong, X. J., Zhu, X. Y. & Dong, G. B. Efficient bottom-up preparation of graphene nanoribbons by mild Suzuki–Miyaura polymerization of simple triaryl monomers. Chem. Eur. J. 22, 9116–9120 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118

    Yang, W. L., Lucotti, A., Tommasini, M. & Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 138, 9137–9144 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119

    Schwab, M. G., Narita, A., Hernandez, Y., Balandina, T., Mali, K. S., De Feyter, S., Feng, X. L. & Mullen, K. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134, 18169–18172 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    El Gemayel, M., Narita, A., Dossel, L. F., Sundaram, R. S., Kiersnowski, A., Pisula, W., Hansen, M. R., Ferrari, A. C., Orgiu, E., Feng, X. L., Mullen, K. & Samor, P. Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale 6, 6301–6314 (2014).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Vo, T. H., Shekhirev, M., Kunkel, D. A., Morton, M. D., Berglund, E., Kong, L. M., Wilson, P. M., Dowben, P. A., Enders, A. & Sinitskii, A. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).

    PubMed  Article  CAS  Google Scholar 

  122. 122

    Jordan, R. S., Wang, Y., McCurdy, R. D., Yeung, M. T., Marsh, K. L., Khan, S. I., Kaner, R. B. & Rubin, Y. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor. Chem 1, 78–90 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge our distinguished partner groups and dedicated associates who enabled our contributions to the achievements described in this article. We are grateful for the financial support by EC through MoQuaS (Molecular Quantum Spintronics FP7-ICT-2013-10 610449), the Marie Curie ITN project ‘iSwitch’ (GA No. 642196), the Graphene Flagship, ERC-Adv.-Grant 267160 (NANOGRAPH), the Max-Planck Society, the Office of Naval Research BRC Program (molecular synthesis and characterization) and the DFG Priority Program SPP 1459. We are also thankful for fruitful collaborations with BASF SE, Ludwigshafen.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Akimitsu Narita or Klaus Müllen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, I., Hu, Y., Narita, A. et al. Diels–Alder polymerization: a versatile synthetic method toward functional polyphenylenes, ladder polymers and graphene nanoribbons. Polym J 50, 3–20 (2018). https://doi.org/10.1038/pj.2017.69

Download citation

Further reading

Search

Quick links