Review | Published:

Polymer Synthesis and Reactions

Diels–Alder polymerization: a versatile synthetic method toward functional polyphenylenes, ladder polymers and graphene nanoribbons

Polymer Journal volume 50, pages 320 (2018) | Download Citation

Abstract

The Diels–Alder reaction has been widely used in synthetic organic chemistry since its discovery in 1928. The catalyst-free nature, functional group tolerance and high efficiency of the Diels–Alder reaction also make it promising for the fabrication of functional polymeric materials. In particular, a large variety of functional polyphenylenes (polymer structures mainly consisting of phenylenes) and ladder polymers (double-stranded polymers with periodic linkages connecting the strands) have been obtained by this method, offering potential applications such as polymer electrolyte membranes and gas separation. More recently, tailor-made polyphenylenes prepared by Diels–Alder polymerization have been used as precursors of structurally well-defined graphene nanoribbons (ribbon-shaped nanometer-wide graphene segments) with different widths, exhibiting long lengths (>600 nm) and tunable electronic bandgaps. This article provides a comprehensive review of the use of Diels–Alder polymerization to build functional polyphenylenes, ladder polymers and graphene nanoribbons.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Synthesen in der hydroaromatischen Reihe. Justus Liebig's Ann. Chem. 460, 98–122 (1928).

  2. 2.

    , , & The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).

  3. 3.

    , & Click polymerizations: encouraging route for shape memory polymers. Mater. Lett. 172, 216–221 (2016).

  4. 4.

    & Inverse electron demand Diels–Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev 42, 5131–5142 (2013).

  5. 5.

    , & Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater. 19, 2197–2208 (2007).

  6. 6.

    Diels–Alder ‘click’ reactions: recent applications in polymer and material science. Polym. Chem. 2, 2133 (2011).

  7. 7.

    , & Discrete macromolecular constructs via the Diels–Alder ‘Click’ reaction. J. Polym. Sci. Part A 49, 4103–4120 (2011).

  8. 8.

    & Polymerization of benzene top-polyphenyl by aluminum chloride-cupric chloride. J. Am. Chem. Soc. 85, 454–458 (1963).

  9. 9.

    , & Polyphenylene nanostructures. Chem. Rev. 99, 1747–1786 (1999).

  10. 10.

    , & Big is beautiful—‘aromaticity’ revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

  11. 11.

    & Dimensional evolution of polyphenylenes: expanding in all directions. Chem. Rev 116, 2103–2140 (2016).

  12. 12.

    , , , , , , , , , , & Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. (Camb) 6919–6921 (2009).

  13. 13.

    , , , , , & Spectroscopy and photophysics of structural isomers of naphthalene:z-phenylvinylacetylene. J. Phys. Chem. A 114, 3190–3198 (2010).

  14. 14.

    , , & Uniquely versatile: nano-site defined materials based on polyphenylene dendrimers. N. J. Chem. 36, 282–298 (2012).

  15. 15.

    , , , & The polar side of polyphenylene dendrimers. Chem. Soc. Rev. 44, 4072–4090 (2015).

  16. 16.

    & Polyarylenes and poly(arylenevinylenes), 7. A soluble ladder polymer via bridging of functionalized poly(p-phenylene)-precursors. Die Makromol. Chem. Rapid Commun. 12, 489–497 (1991).

  17. 17.

    , , , , , & Compedium of Polymer Terminology and Nomenclature IUPAC Recommendations, (The Royal Society of Chemistry, Cambridge, UK, 2009).

  18. 18.

    , , , & Fully conjugated ladder polymers. Chem. Sci. 8, 2503–2521 (2017).

  19. 19.

    , , , & Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J. Phys. Chem. B 106, 7791–7795 (2002).

  20. 20.

    , , , , & High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys. Rev. Lett. 96, 146601 (2006).

  21. 21.

    , , & Diffusion length of triplet excitons in organic semiconductors. Phys. Rev. B 82, 205211 (2010).

  22. 22.

    & Polyphenylene-type emissive materials: poly(para-phenylene)s. Polyfluorenes Ladder Polymers 199, 1–82 (2006).

  23. 23.

    , , , & Conjugated ladder polymers by a cyclopentannulation polymerization. J. Am. Chem. Soc. 139, 5801–5807 (2017).

  24. 24.

    Ladder-type materials. J. Mater. Chem. 9, 1853–1864 (1999).

  25. 25.

    Ladder polymers: the new generation. Adv. Mater. 3, 282–291 (1991).

  26. 26.

    , , & New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

  27. 27.

    , & Bottom-up synthesis of chemically precise graphene nanoribbons. Chem. Rec. 15, 295–309 (2015).

  28. 28.

    , , & From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).

  29. 29.

    Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

  30. 30.

    & The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009).

  31. 31.

    A guide to the design of electronic properties of graphene nanoribbons. Accounts Chem. Res. 46, 2319–2328 (2013).

  32. 32.

    , , , & Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

  33. 33.

    , & Field-effect transistors based on two-dimensional materials for logic applications. Chin. Phys. B 22, 098505 (2013).

  34. 34.

    & Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016).

  35. 35.

    , , , , , & Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design. ACS Nano 6, 5539–5548 (2012).

  36. 36.

    , & Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells. Sci. Rep. UK 4, 6579 (2014).

  37. 37.

    , , & Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett 98, 206805 (2007).

  38. 38.

    , , & Graphene nano-ribbon electronics. Phys. E 40, 228–232 (2007).

  39. 39.

    , , & Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008).

  40. 40.

    , , , , , & Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–U875 (2009).

  41. 41.

    , , , & Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

  42. 42.

    The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Progr. Polym. Sci. 38, 1–29 (2013).

  43. 43.

    & Condensed cyclobutane aromatic compounds. VI. The pyrolysis of 1,3-dihydroisothianaphthene-2,2-dioxide: a new synthesis of benzocyclobutene1. J. Am. Chem. Soc. 81, 4266–4268 (1959).

  44. 44.

    & Advances in cycloaddition polymerizations. Chem. Soc. Rev. 35, 280–312 (2006).

  45. 45.

    & Diensynthesen mit Diinen. Chem. Beri. 93, 1769–1773 (1960).

  46. 46.

    Hexaphenylbenzene. Org. Synth. 46, 44 (1966).

  47. 47.

    , , & Diels–Alder polymerizations: polymers containing controlled aromatic segments. J. Polym. Sci. Part B 4, 791–793 (1966).

  48. 48.

    & Synthese von polyphenyl-poly-phenylen. Naturwissenschaften 53, 306–306 (1966).

  49. 49.

    , & Diels–Alder polymers. III. Polymers containing phenylated phenylene units. J Polym Sci Part A-1 5, 2721–2729 (1967).

  50. 50.

    , , & Diels–Alder polymerizations. IV. Polymers containing short phenylene blocks connected by alkylene units. Macromolecules 1, 431–436 (1968).

  51. 51.

    & Diels–Alder polymers: polyphenylenes containing alternating phenylene and triphenylphenylene units (1). J. Polym. Sci. Part B 7, 525–527 (1969).

  52. 52.

    & Preparation of poly(octaphenyl-tetraphenylene). J. Polym. Sci. Part B 7, 519–523 (1969).

  53. 53.

    , & Synthesis and properties of polyphenyls and polyphenylenes. J. Macromol. Sci. Part C 5, 295–386 (1971).

  54. 54.

    & Polyphenylenes. J. Polym. Sci. Macromol. Rev. 5, 385–430 (1971).

  55. 55.

    & Diels–Alder polymerization between bis(cyclopentadienones) and acetylenes. A versatile route to new highly aromatic polymers. Macromolecules 28, 124–130 (1995).

  56. 56.

    , , , & Synthesis and properties of highly phenyl-substituted fluorene copolymers containing hole and electron transporting moieties via Diels–Alder Polymerization. Mol. Crystals Liquid Crystals 424, 159–165 (2004).

  57. 57.

    Industrial Gas Handbook: Gas Separation and Purification, Taylor & Francis Group, LLC, Boca Raton, FL, USA, (2006).

  58. 58.

    , & Homopolymer and multi-block Diels–Alder polyphenylenes: synthesis, physical properties, X-ray diffraction, and gas transport. Eur. Polym. J. 89, 301–310 (2017).

  59. 59.

    , & Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

  60. 60.

    , , , & A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011).

  61. 61.

    Conducting membranes for fuel cells and other electrochemical devices. Chem. Mater. 26, 361–380 (2014).

  62. 62.

    , , , & Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004).

  63. 63.

    , , & Ionomeric poly(phenylene) prepared by Diels−Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules 38, 5010–5016 (2005).

  64. 64.

    , & Transport in sulfonated poly(phenylene)s: proton conductivity, permeability, and the state of water. Polymer 47, 4238–4244 (2006).

  65. 65.

    , & Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42, 8316–8321 (2009).

  66. 66.

    , , , , , & Evaluation of hydrogen and methanol fuel cell performance of sulfonated diels alder poly(phenylene) membranes. J. Power Sources 195, 104–110 (2010).

  67. 67.

    , , & Improving electrodialysis based water desalination using a sulfonated Diels–Alder poly(phenylene). J. Membr. Sci. 531, 103–110 (2017).

  68. 68.

    , , , , & Vanadium redox flow battery efficiency and durability studies of sulfonated Diels–Alder poly(phenylene)s. Electrochem. Commun. 20, 48–51 (2012).

  69. 69.

    , , , , , , , & Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application. Electrochim. Acta 119, 16–23 (2014).

  70. 70.

    , , & Structurally-defined, sulfo-phenylated, oligophenylenes and polyphenylenes. J. Am. Chem. Soc. 137, 12223–12226 (2015).

  71. 71.

    , , , , & Highly stable, low gas crossover, proton-conducting phenylated polyphenylenes. Angew. Chem. Int. Ed. 56, 9058–9061 (2017).

  72. 72.

    & Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects. Chem. Rev. 109, 5924–5973 (2009).

  73. 73.

    & Dendritic and hyperbranched polyphenylenes via a simple Diels–Alder route. Tetrahedron 53, 15349–15366 (1997).

  74. 74.

    , , , , & Diels–Alder reactions of tetraphenylcyclopentadienones in nanochannels: fabrication of nanotubes from hyperbranched polyphenylenes. Adv. Mater. 17, 1492–1496 (2005).

  75. 75.

    , & Novel branched polyphenylenes based on A2/B3 and AB2/AB monomers via Diels–Alder cycloaddition. Macromol. Chem. Phys. 207, 1825–1833 (2006).

  76. 76.

    , , , , & Hyperbranched pyridylphenylene polymers based on the first-generation dendrimer as a multifunctional monomer. RSC Adv. 5, 99510–99516 (2015).

  77. 77.

    , & Polymers. IV. Polymeric Diels–Alder reactions. J. Org. Chem. 27, 3295–3299 (1962).

  78. 78.

    , , & Molecular belts and collars in the making: a hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. 26, 892–894 (1987).

  79. 79.

    & New ladder polymers via repetitive Diels–Alder reaction under high pressure. Macromolecules 26, 3037–3040 (1993).

  80. 80.

    & 5,6,7,8-Tetramethylenebicyclo[2.2.2]oct-2-ene as ‘Bis(diene)’ in repetitive Diels–Alder reactions. Chem. Ber. 124, 2101–2103 (1991).

  81. 81.

    , , & 1,2,5,6-Tetra-exo-methylenecynclooctane and [2.2]-(2,3)-furanophane as bis-diene components in Diels–Alder reactions. Tetrahedron Lett. 31, 2701–2704 (1990).

  82. 82.

    & Semiflexible ribbon-type structures via repetitive Diels–Alder cycloaddition. Cage formation versus polymerization. J. Am. Chem. Soc. 116, 2318–2323 (1994).

  83. 83.

    , & Hydrocarbon ladder aromatics from a Diels–Alder reaction. J. Polym. Sci. Part A-1 8, 2245–2254 (1970).

  84. 84.

    , & Synthesis of a fully unsaturated all-carbon ladder polymer. Nature 368, 831–834 (1994).

  85. 85.

    & Ribbon-shaped structures via repetitive Diels–Alder reaction—a polycatafusene. Macromolecules 22, 3506–3508 (1989).

  86. 86.

    , & A soluble polyacene precursor. Makromol. Chem. Rapid 10, 427–430 (1989).

  87. 87.

    , , , , & Synthesis of a fully unsaturated molecular board. Angew. Chem. Int. Ed. 33, 2209–2212 (1994).

  88. 88.

    & Bisannelation with a benzo[1,2-c:4,5-c']difuran equivalent: a new route to linear acene derivatives. J. Org. Chem. 53, 1341–1343 (1988).

  89. 89.

    & Conjugated polymers containing large soluble diethynyl iptycenes. Org. Lett. 7, 4357–4360 (2005).

  90. 90.

    Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives, (Wiley-VCH, Weinheim, 2000).

  91. 91.

    , , , , & perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). J. Am. Chem. Soc. 127, 17976–17977 (2005).

  92. 92.

    , , & Synthesis of a novel poly(iptycene) ladder polymer. Macromolecules 39, 3202–3209 (2006).

  93. 93.

    & meso-Benzdianthron (Helianthron),meso-Naphthodianthron, und ein neuer Weg zum Flavanthren. Ber. Dtsch. Chem. 43, 1734–1746 (1910).

  94. 94.

    Clar, E. & Ironside, C.T. Hexabenzocoronene. Proc. Chem. Soc. 150–150 (1958)

  95. 95.

    Grzybowski, M., Skonieczny, K., Butenschön, H. & Gryko, D.T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Edit.52, 9900–9930 (2013)

  96. 96.

    Shifrina, Z.B., Averina, M.S., Rusanov, A.L., Wagner, M. & Müllen, K. Branched polyphenylenes by repetitive Diels-Alder cycloaddition. Macromolecules33, 3525–3529 (2000)

  97. 97.

    , , , , , , & From branched polyphenylenes to graphite ribbons. Macromolecules 36, 7082–7089 (2003).

  98. 98.

    , , , , , , , , , , , , , , , , & Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

  99. 99.

    , , , , , , , , , & Fluorescence from graphene nanoribbons of well-defined structure. Carbon 119, 235–240 (2017).

  100. 100.

    , , , , , , , , , , & Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nat. Commun. 7, 11010 (2016).

  101. 101.

    , , , , , , , , & Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale 7, 12807–12811 (2015).

  102. 102.

    , , , , , & Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 136, 7555–7558 (2014).

  103. 103.

    , , , , , , , , & Electrical characteristics of field-effect transistors based on chemically synthesized graphene nanoribbons. Adv. Electron Mater. 1, 1400010 (2015).

  104. 104.

    , , , , , , , , & Fabrication of three terminal devices by electrospray deposition of graphene nanoribbons. Carbon 104, 112–118 (2016).

  105. 105.

    , , , , , , , , , , , , , , , , , , , , , , & Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

  106. 106.

    , , , , , , , , , , , , , , , , , , , , , , , , & Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).

  107. 107.

    , , , , , , & Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat. Commun. 4, 2646 (2013).

  108. 108.

    , , , & Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 3, 7727–7731 (2015).

  109. 109.

    , , , , , , , , , & Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. Acs Nano 8, 11622–11630 (2014).

  110. 110.

    , , , , , , , , , , , , , & Raman fingerprints of atomically precise graphene nanoribbons. Nano Lett 16, 3442–3447 (2016).

  111. 111.

    , , , , , , , , & Role of edge engineering in photoconductivity of graphene nanoribbons. J. Am. Chem. Soc. 139, 7982–7988 (2017).

  112. 112.

    , , , , & Synthesis of polybenzoquinolines as precursors for nitrogen-doped graphene nanoribbons. Angew. Chem. Int. Ed. 54, 5883–5887 (2015).

  113. 113.

    , , & Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. 50, 2540–2543 (2011).

  114. 114.

    , & Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon 63, 202–209 (2013).

  115. 115.

    , & Charge-transport tuning of solution-processable graphene nanoribbons by substitutional nitrogen doping. Macromol. Chem. Phys. 214, 2768–2773 (2013).

  116. 116.

    , , , , , , , , , , & Bottom-up synthesis of necklace-like graphene nanoribbons. Chem. Asian J. 10, 2134–2138 (2015).

  117. 117.

    , , , & Efficient bottom-up preparation of graphene nanoribbons by mild Suzuki–Miyaura polymerization of simple triaryl monomers. Chem. Eur. J. 22, 9116–9120 (2016).

  118. 118.

    , , & Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 138, 9137–9144 (2016).

  119. 119.

    , , , , , , & Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134, 18169–18172 (2012).

  120. 120.

    , , , , , , , , , , & Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale 6, 6301–6314 (2014).

  121. 121.

    , , , , , , , , & Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).

  122. 122.

    , , , , , , & Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor. Chem 1, 78–90 (2016).

Download references

Acknowledgements

We acknowledge our distinguished partner groups and dedicated associates who enabled our contributions to the achievements described in this article. We are grateful for the financial support by EC through MoQuaS (Molecular Quantum Spintronics FP7-ICT-2013-10 610449), the Marie Curie ITN project ‘iSwitch’ (GA No. 642196), the Graphene Flagship, ERC-Adv.-Grant 267160 (NANOGRAPH), the Max-Planck Society, the Office of Naval Research BRC Program (molecular synthesis and characterization) and the DFG Priority Program SPP 1459. We are also thankful for fruitful collaborations with BASF SE, Ludwigshafen.

Author information

Affiliations

  1. Department of Synthetic Chemistry, Max-Planck-Institut für Polymerforschung, Mainz, Germany

    • Ian Cheng-Yi Hou
    • , Yunbin Hu
    • , Akimitsu Narita
    •  & Klaus Müllen
  2. Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany

    • Klaus Müllen

Authors

  1. Search for Ian Cheng-Yi Hou in:

  2. Search for Yunbin Hu in:

  3. Search for Akimitsu Narita in:

  4. Search for Klaus Müllen in:

Competing interests

The authors declare no conflict of interest.

Corresponding authors

Correspondence to Akimitsu Narita or Klaus Müllen.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/pj.2017.69

Further reading