Polymer Engineering

Influence of molecular orientation on mixtures of 4-n-pentyl-4′-cyanobiphenyl and biphenyl-dimethacrylate monomers for polymerization


Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11


  1. 1

    Ringsdorf, H. & Schmidt, H.-W. Electro-optical effects of azo dye containing liquid crystalline copolymers. Makromol. Chem. Phys. 185, 1327–1334 (1984).

    CAS  Article  Google Scholar 

  2. 2

    Hagen, R. & Bieringer, T. Photoaddressable polymers for optical data storage. Adv. Mater. 13, 1805–1810 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Hackel, M., Kador, L., Kropp, D. & Schmidt, H.-W. Polymer blends with azobenzene-containing block copolymers as stable rewritable volume holographic media. Adv. Mater. 19, 227–231 (2007).

    Article  Google Scholar 

  4. 4

    Rosenhauer, R., Stumpe, J., Gimenez, R., Pinol, M., Serrano, J. L. & Vinnuales, A. All-in-one layer: anisotropic emission due to light-induced orientation of a multifunctional polymer. Macromol. Rapid Commun. 28, 932–936 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Aldred, M. P., Contoret, A. E. A., Farrar, S. R., Kelly, S. M., Mathieson, D., O’Neill, M., Tsoi, W. C. & Vlachos, P. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).

    CAS  Article  Google Scholar 

  6. 6

    O’Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  Google Scholar 

  7. 7

    Drazic, P. S. Polymer dispersed nematic liquid crystal for large area displays and light valves. J. Appl. Phys. 60, 2142–2148 (1986).

    Article  Google Scholar 

  8. 8

    Hikmet, R. A. M. Electrically induced light scattering from anisotropic gels. J. Appl. Phys. 68, 4406–4412 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Fujikake, H., Takizawa, K., Kikuchi, H., Fujii, T., Kawakita, M. & Aida, T. Polymer-stabilized ferroelectric liquid crystal devices with grayscale memory. Jpn. J. Appl. Phys. 36, 6449–6454 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Du, F., Lu, Y.-Q., Ren, H.-W., Gauza, S. & Wu, S.-T. Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator. Jpn. J. Appl. Phys. 43, 7083–7086 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Rajaram, C. V., Hudson, S. D. & Chien, L. C. Morphology of polymer-stabilized liquid crystals. Chem. Mater. 7, 2300–2308 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Nakanishi, Y. & Okamoto, K. Relationship between concentration of initiator and image-sticking phenomenon of polymer-sustained-alignment liquid crystal displays. Jpn. J. Appl. Phys. 51, 041701 (2012).

    Article  Google Scholar 

  13. 13

    Nakagaki, R., Hiramatsu, M, Watanabe, T., Tanimoto, Y. & Nagakura, S. Magnetic isotope and external magnetic field effects upon the photo-Fries rearrangement of 1-naphthyl acetate. J. Phys. Chem. 89, 3222–3226 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Kawatsuki, N., Neko, T., Kurita, M., Nishiyama, A. & Kondo, M. Axis-selective photo-Fries rearrangement and photoinduced molecular reorientation in liquid crystalline polymer films. Macromolecules 44, 5736–5742 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Lyu, J. J., Kikuchi, H., Kim, D. H., Lee, J. H., Kim, K. H., Higuchi, H. & Lee, S. H. Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays. J. Phys. D Appl. Phys. 44, 325104 (2011).

    Article  Google Scholar 

  16. 16

    Naemura, S. & Sawada, A. A. Ionic conduction in nematic and smectic a liquid crystals. Mol. Cryst. Liq. Cryst. 400, 79–96 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Mitsumoto, T., Oka, S., Kimura, M. & Akahane, T. Relationship between surface order and surface azimuthal anchoring strength on polyimide with linearly polarized ultraviolet light exposure. Jpn. J. Appl. Phys. 44, 4062–4066 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Nakanishi, Y., Hanaoka, K., Shibasaki, M. & Okamoto, K. Relation between monomer structure and image sticking phenomenon of polymer-sustained-alignment liquid crystal displays. Jpn. J. Appl. Phys. 50, 051702 (2011).

    Article  Google Scholar 

  19. 19

    Stannarius, R., Crawford, G. P., Chien, L. C. & Doane, J. W. Nematic director orientation in a liquid-crystal-dispersed polymer: a deuterium nuclear-magnetic-resonance approach. J. Appl. Phys. 70, 135–143 (1991).

    CAS  Article  Google Scholar 

  20. 20

    Lebovka, N., Melnyk, V., Mamunya, Ye., Klishevich, G., Goncharuk, A. & Pivovarova, N. Low-temperature phase transformations in 4-cyano-4’-pentyl-biphenyl (5CB) filled by multiwalled carbon nanotubes. Physica E 52, 65–69 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Takanishi, Y., Shin, G. J., Jung, J. C., Choi, S.-W., Ishikawa, K., Watanabe, J., Takezoe, H. & Toledano, P. Observation of very large chiral domains in a liquid crystal phase formed by mixtures of achiral bent-core and rod molecules. J. Mater. Chem. 15, 4020–4024 (2005).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Masanobu Mizusaki or Shin-ichi Yusa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mizusaki, M., Nakai, K., Enomoto, S. et al. Influence of molecular orientation on mixtures of 4-n-pentyl-4′-cyanobiphenyl and biphenyl-dimethacrylate monomers for polymerization. Polym J 49, 457–463 (2017). https://doi.org/10.1038/pj.2017.4

Download citation

Further reading


Quick links