Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical Properties of Polymers

Structural studies of thermally stable, combustion-resistant polymer composites


Composites of the industrially important polymer, poly(methyl methacrylate) (PMMA), were prepared by free-radical polymerization of MMA with varying amounts (1–30 wt. %) of sodium dioctylsulfosuccinate (Aerosol OT or AOT) surfactant added to the reaction mixture. The composites with AOT incorporated show enhanced resistance to thermal degradation compared to pure PMMA homopolymer, and micro-cone combustion calorimetry measurements also show that the composites are combustion-resistant. The physical properties of the polymers, particularly at low concentrations of surfactant, are not significantly modified by the incorporation of AOT, whereas the degradation is modified considerably for even the smallest concentration of AOT (1 wt. %). Structural analyses over very different lengthscales were performed. X-ray scattering was used to determine nm-scale structure, and scanning electron microscopy was used to determine μm-scale structure. Two self-assembled species were observed: large phase-separated regions of AOT using electron microscopy and regions of hexagonally packed rods of AOT using X-ray scattering. Therefore, the combustion resistance is observed whenever AOT self-assembles. These results demonstrate a promising method of physically incorporating a small organic molecule to obtain a highly thermally stable and combustion-resistant material without significantly changing the properties of the polymer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1

    Deanin, R. D. Polymer Structure, Properties and Applications, (Cahners, Boston, 1972).

    Google Scholar 

  2. 2

    Birley, A. W. & Scott, M. J. Plastic Materials: Properties and Applications, (Leonard Hill, New York, 1982).

    Google Scholar 

  3. 3

    Grassie, N. & Melville, H. W. The thermal degradation of polyvinyl compounds. II. The degradation of benzoyl peroxide catalyzed polymethyl methacrylates. Proc. R. Soc. Lond. A 199, 14–23 (1949).

    CAS  Article  Google Scholar 

  4. 4

    Yeh, J.-M., Liou, S.-J., Lin, C.-Y., Cheng, C.-Y., Chang, Y.-W. & Lee, K.-R. Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent. Chem. Mater. 14, 154–161 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Meneghetti, P. & Qutubuddin, S. Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim. Acta 442, 74–77 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Prokeš, J., Cieslar, M., Hwang, J.-Y., Chen, K.-H. & Sapurina, I. Multi-wall carbon nanotubes coated with polyaniline. Polymer 47, 5715–5723 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Fukushima, K., Murariu, M., Camino, G. & Dubois, P. Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym. Degrad. Stab. 95, 1063–1076 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Yang, M., Zhang, S. & Qin, H. in Physical Properties and Applications of Polymer Nanocomposites, 454–491 (Woodhead, Cambridge, 2010)

  9. 9

    Kuila, T., Khanra, P., Mishra, A. K., Kim, N. H. & Lee, J. H. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym. Test. 31, 282–289 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Cai, D., Jin, J., Yusoh, K., Rafiq, R. & Song, M. High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol. 72, 702–707 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Zhang, T., Xu, G., Regev, O. & Blum, F. D. Low-temperature polymerization of methyl methacrylate emulsion gels through surfactant catalysis. J. Colloid Interface Sci. 461, 128–135 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Beddoes, C. M., Case, C. P. & Briscoe, W. H. Understanding nanoparticle cellular entry: a physicochemical perspective. Adv. Colloid Interface Sci. 218, 48–68 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Eastoe., J. Surfactant Chemistry, (Wuhan University Press, Wuhan, China, 2005).

    Google Scholar 

  15. 15

    Yan, F. & Texter, J. Capturing nanoscopic length scales and structures by polymerizatioin in microemulsions. Soft Matter 2, 109–118 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Texter, J., Ge, L., Mourey, T. H. & Bryan, T. G. Polymerizable bis(2-ethylhexyl)sulfosuccinate: application in microemulsion polymerization. Langmuir 20, 11288–11292 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Ge, L. & Texter, J. Combustion resistant nanocomposites from water/AOT/MMA reverse microemulsions. Polym. Bull. 52, 297–305 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Kohlbrecher, J. & Bressler, I. Software package SASfit for fitting small-angle scattering curves

  19. 19

    Breßler, I., Kohlbrecher, J. & Thünemann, A. F. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Cryst. 48, 1587–1598 (2015).

    Article  Google Scholar 

  20. 20

    Doucet, M. et al SasView Version 4.1. Zenodo

  21. 21

    Lyon, R. E. & Walters, R. N. Pyrolysis combustion flow calorimetry. J. Anal. Appl. Pyrolysis 71, 27–46 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Cogen, J. M., Lin, T. S. & Lyon, R. E. Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater. 33, 33–50 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Tyndall, J. On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally. Proc. R. Soc. Lond. 17, 223–233 (1868).

    Google Scholar 

  24. 24

    Tyndall, J. On the action of rays of high refrangibility upon gaseous matter. Phil. Trans. R. Soc. Lond. 160, 333–365 (1870).

    Article  Google Scholar 

  25. 25

    Heller, W. & Vassy, E. Tyndall spectra, their significance and application. J. Chem. Phys. 14, 565–566 (1946).

    CAS  Article  Google Scholar 

  26. 26

    Heller, W., Klevens, H. B. & Oppenheimer, H. The determination of particle sizes from Tyndall spectra. J. Chem. Phys. 14, 566–567 (1946).

    CAS  Article  Google Scholar 

  27. 27

    Hiemenz, P. C. & Lodge, T. P. Polymer Chemistry, 2nd edn (CRC Press, Boca Raton, FL, 2007).

    Google Scholar 

  28. 28

    Blum, F. D., Young, E. N., Smith, G. & Sitton, O. C. Thermal analysis of adsorbed poly(methyl methacrylate) on silica. Langmuir 22, 4741–4744 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Beevers, R. B. & White, E. F. T. Physical properties of vinyl polymers. Part 1.—Dependence of the glass-transition temperature of polymethylmethacrylate on molecular weight. Trans. Faraday Soc. 56, 744–752 (1960).

    CAS  Article  Google Scholar 

  30. 30

    Omastová, M., Rychlý, J., Trchová, M. & Kovářová, J. Properties and thermal decomposition of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Des. Monomers Polym. 7, 633–646 (2004).

    Article  Google Scholar 

  31. 31

    Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957).

    CAS  Article  Google Scholar 

  32. 32

    Ferriol, M., Gentilhomme, A., Cochez, M., Oget, N. & Mieloszynski, J. L. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym. Degrad. Stab. 79, 271–281 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Manring, L. E. Thermal degradation of saturated poly(methyl methacrylate). Macromolecules 21, 528–530 (1988).

    CAS  Article  Google Scholar 

  34. 34

    Manring, L. E. Thermal degradation of poly(methyl methacrylate). 2. Vinyl-terminated polymer. Macromolecules 22, 2673–2677 (1989).

    CAS  Article  Google Scholar 

  35. 35

    Manring, L. E., Sogah, D. Y. & Cohen, G. M. Thermal degradation of poly(methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules 22, 4652–4654 (1989).

    CAS  Article  Google Scholar 

  36. 36

    Manring, L. E. Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules 24, 3304–3309 (1991).

    CAS  Article  Google Scholar 

  37. 37

    Holland, B. J. & Hay, J. N. The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer 42, 4825–4835 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Tretsiakova-McNally, S. & Joseph, P. Pyrolysis combustion flow calorimetry studies on some reactively modified polymers. Polymers 7, 453–467 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Rogers, J. & Winsor, P. A. Change in the optic sign of the lamellar phase (G) in the Aerosol OT/water system with composition or temperature. J. Colloid Interface Sci. 30, 247–257 (1969).

    CAS  Article  Google Scholar 

  40. 40

    Eastoe, J., Zou, A., Espidel, Y., Glatter, O. & Grillo, I. Photo-labile lamellar phases. Soft Matter 4, 1215–1218 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Heller, W., Bhatnagar, H. L. & Nakagaki, M. Theoretical investigations on the light scattering of spheres. XIII. The ‘wavelength exponent’ of differential turbidity spectra. J. Chem. Phys. 36, 1163–1170 (1962).

    CAS  Article  Google Scholar 

  42. 42

    Bartoň, J., Sarov, Y. & Capek, I. Polymerization of vinyl monomers in separated Winsor II (w/o) and Winsor I (o/w) microemulsion phases. Part 1: preparation and characterization of polymerizable vinyl-monomer-containing microemulsions. Des. Monomers Polym. 9, 153–168 (2006).

    Article  Google Scholar 

  43. 43

    García, O., Sastre, R., del Agua, D., Costela, A. & García-Moreno, I. New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials. Chem. Mater. 18, 601–602 (2006).

    Article  Google Scholar 

  44. 44

    Goldstein, J. I. & Yakowitz, H. (eds) Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis, (Plenum, London, 1975).

    Book  Google Scholar 

  45. 45

    Jing, B., Chen, X., Zhao, Y., Wang, X., Cai, J. & Qiu, H. Ionic self-assembled organic nanobelts from the hexagonal phase complexes and their cyclodextrin inclusions. J. Phys. Chem. B 112, 7191–7195 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Lai, W.-C. A method for preparing self-assembled gels from opaque solutions with high concentrations of AOT. Colloids Surf. A: Physicochem. Eng. Aspects 433, 139–144 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Camerel, F., Strauch, P., Antonietti, M. & Faul, C. F. J. Copper-metallomesogen structures obtained by ionic self-assembly (ISA): Molecular electromechanical switching driven by cooperativity. Chem. Eur. J. 9, 3764–3771 (2003).

    CAS  Article  Google Scholar 

  48. 48

    Grillo, I. in Soft Matter Characterization (eds R. Borsali and R. Pecora) 723–782 (Springer, the Netherlands, 2008)

  49. 49

    Lovell, R. & Windle, A. H. Determination of the local conformation of PMMA from wide-angle X-ray scattering. Polymer 22, 175–184 (1981).

    CAS  Article  Google Scholar 

  50. 50

    Hammouda, B. Probing nanoscale structures—The SANS toolbox

  51. 51

    Skouri, M., Marignan, J. & May, R. X-ray and neutron-scattering study of the lamellar and L3 phases of the system aerosol-OT-water: effect of NaCl and decane. Colloid Polym. Sci. 269, 929–937 (1991).

    CAS  Article  Google Scholar 

  52. 52

    Calandra, P., Longo, A., Marcianò, V. & Liveri, V. T. Physicochemical investigation of lightfast AgCl and AgBr nanoparticles synthesized by a novel solid-solid reaction. J. Phys. Chem. B 107, 6724–6729 (2003).

    CAS  Article  Google Scholar 

  53. 53

    Rayleigh, L. The incidence of light upon a transparent sphere of dimensions comparable with the wave-length. Proc. R. Soc. Lond. A 84, 25–46 (1910).

    Article  Google Scholar 

  54. 54

    Guinier, A. & Fournet, G. Small-Angle Scattering of X-Rays, (John Wiley & Sons, New York, 1955).

    Google Scholar 

  55. 55

    Percus, J. K. & Yevick, G. J. Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958).

    CAS  Article  Google Scholar 

  56. 56

    Vrij, A. Mixtures of hard spheres in the Percus-Yevick approximation. Light scattering at finite angles. J. Chem. Phys. 71, 3267–3270 (1979).

    CAS  Article  Google Scholar 

  57. 57

    Kotlarchyk, M., Huang, J. S. & Chen, S.-H. Structure of AOT reversed micelles determined by small-angle neutron scattering. J. Phys. Chem. 89, 4382–4386 (1985).

    CAS  Article  Google Scholar 

  58. 58

    Smith, G. N., Brown, P., Rogers, S. E. & Eastoe, J. Evidence for a critical micelle concentration of surfactants in hydrocarbon solvents. Langmuir 29, 3252–3258 (2013).

    CAS  Article  Google Scholar 

  59. 59

    Smith, G. N., Brown, P., James, C., Kemp, R., Khan, A. M., Plivelic, T. S., Rogers, S. E. & Eastoe., J. The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents. J. Colloid Interface Sci. 465, 316–322 (2016).

    CAS  Article  Google Scholar 

  60. 60

    Wang, Y.-Z., Yi, B., Wu, B., Yang, B. & Liu, Y. Thermal behaviors of flame-retardant polycarbonates containing diphenyl sulfonate and poly(sulfonyl phenylene phosphonate). J. Appl. Polym. Sci. 89, 882–889 (2003).

    CAS  Article  Google Scholar 

  61. 61

    Levchik, S. V. & Weil, E. D. Overview of recent developments in the flame retardancy of polycarbonates. Polym. Int. 54, 981–998 (2005).

    CAS  Article  Google Scholar 

  62. 62

    Levchik, S. V. & Weil, E. D. Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. J. Fire Sci. 24, 137–151 (2006).

    CAS  Article  Google Scholar 

  63. 63

    Babrauskas, V. & Peacock, R. D. Heat release rate: the single most important variable in fire hazard. Fire Saf. J. 18, 255–272 (1992).

    CAS  Article  Google Scholar 

Download references


GNS was funded by a CASE PhD studentship (Merck Chemicals Ltd. UK, an affiliate of Merck KGaA, Darmstadt, Germany and the UK Engineering and Physical Sciences Research Council EPSRC). The Ganesha X-ray scattering apparatus used for this research was purchased under EPSRC Grant ‘Atoms to Applications’ Grant ref. EP/K035746/1. This work benefited from the use of the SasView application, originally developed under NSF Award DMR-0520547. SasView also contains code developed with funding from the EU Horizon 2020 programme under the SINE2020 project Grant No 654000. Mr Jonathan Jones (Electron and Scanning Probe Microscopy Facility, University of Bristol) is acknowledged for SEM images and EDX analysis.

Author information



Corresponding author

Correspondence to Gregory N Smith.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Polymer Journal website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, G., Hallett, J., Joseph, P. et al. Structural studies of thermally stable, combustion-resistant polymer composites. Polym J 49, 711–719 (2017).

Download citation

Further reading


Quick links