Synthesis and Photoluminescence of Novel Organo-Soluble Polyarylates Bearing (N-Carbazolyl)triphenylamine Moieties

Abstract

A new series of polyarylates containing carbazolyl-substituted triphenylamine units were synthesized by direct polycondensation of 4,4′-dicarboxy-4″-N-carbazolyltriphenylamine with various bisphenols. All polymers were highly soluble in various common organic solvents and could afford tough, transparent, and colorless films by solution casting. These amorphous and organo-soluble polyarylates showed no significant decomposition below 470 °C in both nitrogen and air atmospheres with glass transition temperatures (Tg) ranging from 234 to 287 °C. In THF solution, these polyarylates exhibited blue photoluminescence around 464–476 nm with quantum yield up to 28%. The photoluminescence exhibited solvent effect and was red-shifted in the polar solvent at room temperature.

References

  1. 1

    H. H. Yang, “Aromatic High-Strength Fiber,” Interscience, New York, 1989.

  2. 2

    Y. Imai and M. Kakimoto, in “Handbook of Polymer Science and Technology. Vol. 1: Synthesis and Properties,” N. P. Cheremisinoff, Ed., Dekker, New York, 1989, p. 177.

  3. 3

    G. S. Liou, M. Kakimoto, and Y. Imai, J. Polym. Sci., Part A: Polym. Chem., 30, 2195 (1992).

  4. 4

    J. A. Mikroyannidis, J. Polym. Sci., Part A: Polym. Chem., 38, 2492 (2000).

  5. 5

    C. P. Yang, G. S. Liou, R. S. Chen, and C. Y. Yang, J. Polym. Sci., Part A: Polym. Chem., 38, 1090 (2000).

  6. 6

    S. H. Hsiao and H. W. Chiang, Eur. Polym. J., 40, 1691 (2004).

  7. 7

    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).

  8. 8

    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990).

  9. 9

    A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem., Int. Ed., 37, 402 (1998).

  10. 10

    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Loglund, and W. R. Salaneck, Nature, 397, 121 (1999).

  11. 11

    C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 85, 3610 (1989).

  12. 12

    C. Adachi, K. Nagai, and Tamoto Tamoto, Appl. Phys. Lett., 66, 2679 (1995).

  13. 13

    Y. Shirota, J. Mater. Chem., 10, 1 (2000).

  14. 14

    Y. Shirota, J. Mater. Chem., 15, 75 (2005).

  15. 15

    E. Bellmann, S. E. Shaheen, S. Thayumannvan, S. Barlow, R. H. Grubbs, S. R. Marder, B. Kippelen, and N. Peyghambarian, Chem. Mater., 10, 1668 (1998).

  16. 16

    E. Bellmann, S. E. Shaheen, R. H. Grubbs, S. R. Marder, B. Kippelen, and N. Peyghambarian, Chem. Mater., 11, 399 (1999).

  17. 17

    J. Lu, A. R. Hlil, Y. Sun, A. S. Hay, T. Maindron, J. P. Dodelet, and M. D’Iorio, Chem. Mater., 11, 2501 (1999).

  18. 18

    X. Wang, M. Nakao, K. Ogino, H. Sato, and H. Tan, Macromol. Chem. Phys., 202, 117 (2001).

  19. 19

    X. Wang, Z. Chen, K. Ogino, H. Sato, K. Strzelec, S. Miyata, Y. J. Luo, and H. Tan, Macromol. Chem. Phys., 203, 739 (2002).

  20. 20

    Q. Fang and T. Yamamoto, Macromolecules, 37, 5894 (2004).

  21. 21

    H. Xiao, B. Leng, and H. Tian, Polymer, 46, 5707 (2005).

  22. 22

    J. S. Cho, A. Kimoto, M. Higuchi, and K. Yamamoto, Macromol. Chem. Phys., 206, 635 (2005).

  23. 23

    M. Sun, J. Li, B. Li, Y. Fu, and Z. Bo, Macromolecules, 38, 2651 (2005).

  24. 24

    Y. Liu, M. S. Liu, X. C. Li, and A. K. Y. Jen, Chem. Mater., 10, 3301 (1998).

  25. 25

    X. C. Li, Y. Liu, M. S. Liu, and A. K. Y. Jen, Chem. Mater., 11, 1568 (1999).

  26. 26

    M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, and E. P. Woo, Adv. Mater., 11, 241 (1999).

  27. 27

    C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, and K. Mullen, Adv. Mater., 14, 809 (2002).

  28. 28

    C. F. Shu, R. Dodda, F. I. Wu, M. S. Liu, and A. K. Y. Jen, Macromolecules, 36, 6698 (2003).

  29. 29

    F. I. Wu, P. I. Shih, C. F. Shu, Y. L. Tung, and Y. Chi, Macromolecules, 38, 9028 (2005).

  30. 30

    Y. J. Pu, M. Soma, J. Kido, and H. Nishide, Chem. Mater., 13, 3817 (2001).

  31. 31

    F. S. Liang, Y. J. Pu, T. Kurata, J. Kido, and H. Nishide, Polymer, 46, 3767 (2005).

  32. 32

    F. S. Liang, T. Kurata, H. Nishide, and J. Kido, J. Polym. Sci., Part A: Polym. Chem., 43, 5765 (2005).

  33. 33

    T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Muller, K. Meerholz, A. Yasuda, and D. Neher, Adv. Mater., 13, 565 (2001).

  34. 34

    Y. Fu, Y. Li, J. Li, S. Yan, and Z. Bo, Macromolecules, 37, 6395 (2004).

  35. 35

    J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, and K. Pielichowski, Prog. Polym. Sci., 28, 1297 (2003).

  36. 36

    H. Sasabe, Supramol. Sci., 3, 91 (1996).

  37. 37

    J. F. Morin and M. Leclerc, Macromolecules, 35, 8413 (2002).

  38. 38

    Z. B. Zhang, M. Fujiki, H. Z. Tang, M. Motonaga, and K. Torimitsu, Macromolecules, 35, 1988 (2002).

  39. 39

    G. Brizius, S. Kroth, and U. H. F. Bunz, Macromolecules, 35, 5317 (2002).

  40. 40

    H. C. Kim, J. S. Kim, K. S. Kim, H. K. Park, S. Baek, and M. Ree, J. Polym. Sci., Part A: Polym. Chem., 42, 825 (2004).

  41. 41

    J. Bouchard, M. Belletele, G. Durocher, and M. Leclerc, Macromolecules, 36, 4624 (2003).

  42. 42

    K. L. Paik, N. S. Baek, and H. K. Kim, Macromolecules, 35, 6782 (2002).

  43. 43

    F. Sanda, T. Kawaguchi, T. Masuda, and N. Kobayashi, Macromolecules, 36, 2224 (2003).

  44. 44

    K. Kim, Y. R. Hong, S. W. Lee, J. I. Jin, Y. Park, B. H. Sohn, W. H. Kim, and J. K. Park, J. Mater. Chem., 11, 3023 (2001).

  45. 45

    Y. Zhang, T. Wada, and H. Sasabe, J. Polym. Sci., Part A: Polym. Chem., 34, 2289 (1996).

  46. 46

    Q. Wang, A. Gharvi, W. Li, and L. Yu, Polym. Prepr., (Am. Chem. Soc., Div. Polym. Chem.), 38, 516 (1997).

  47. 47

    J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Hung, and Y. Cao, Macromolecules, 38, 4072 (2005).

  48. 48

    J. Huang, Y. Niu, W. Yang, Y. Mo, M. Yuan, and Y. Cao, Macromolecules, 35, 6080 (2002).

  49. 49

    J. F. Morin and M. Leclerc, Macromolecules, 34, 4680 (2001).

  50. 50

    C. J. Hawker and K. L. Wooley, Science, 309, 1200, (2005).

  51. 51

    J. Gratt and R. E. Cohen, Macromolecules, 30, 3137 (1997).

  52. 52

    J. Hwang, J. Sohn, and S. Y. Park, Macromolecules, 36, 7970 (2003).

  53. 53

    S. H. Hsiao, C. W. Chen, and G. S. Liou, J. Polym. Sci., Part A: Polym. Chem., 42, 3302 (2004).

  54. 54

    I. Mustonen, T. Hukka, and T. Pakkanen, Macromol. Rapid Commun., 21, 1286 (2000).

  55. 55

    Z. Chen, Y. Liu, C. Zhang, and F. Bai, J. Appl. Polym. Sci., 92, 2777 (2004).

  56. 56

    S. H. Cheng, S. H. Hsiao, T. H. Su, and G. S. Liou, Macromolecules, 38, 307 (2005).

  57. 57

    G. S. Liou, S. H. Hsiao, and T. H. Su, J. Mater. Chem., 15, 1812 (2005).

  58. 58

    G. S. Liou, S. H. Hsiao, N. K. Huang, and Y. L. Yang, Macromolecules, 39, 5337 (2006).

  59. 59

    F. Higashi, M. Ozawa, A. Hoshino, and A. Mochizuki, J. Polym. Sci., Polym. Chem. Ed., 23, 1699 (1985).

  60. 60

    C. Reichardt, Chem. Rev., 94, 2319 (1994).

Download references

Author information

Correspondence to Guey-Sheng Liou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liou, G., Hsiao, S., Huang, H. et al. Synthesis and Photoluminescence of Novel Organo-Soluble Polyarylates Bearing (N-Carbazolyl)triphenylamine Moieties. Polym J 39, 448–457 (2007) doi:10.1295/polymj.PJ2006156

Download citation

Keywords

  • Polyarylates
  • 4,4′-Dicarboxy-4″-N-carbazolyltriphenylamine
  • Glass Transition Temperatures
  • Bisphenols
  • Photoluminescence

Further reading