Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evaluation of the Resistance of Spider Silk to Ultraviolet Irradiation

Abstract

The effects of ultraviolet (UV) irradiation on spider silk were studied in Nephila clavata draglines collected during different developmental stages in order to clarify the resistance of the draglines to sunlight. Electron spin resonance measurements revealed that photo-irradiation produced Cα-centered radicals of the protein molecules constituting the draglines. This was attributed to the photo-induced cleavage of chemical bonds. Greater numbers of radicals were produced in the draglines of mature spiders than in those of juveniles, and in the silks of silkworm compared with the draglines of spider. Spider silk is therefore more resistant to UV irradiation, which might be a consequence of the outside environment in which it functions. The spider silk is expected to be a useful next-generation material for textiles.

References

  1. 1

    M. W. Denny, J. Exp. Biol., 65, 483 (1976).

  2. 2

    R. W. Work and N. Morosoff, Text Res. J., 46, 349 (1982).

  3. 3

    J. M. Gosline, M. W. Denny, and M. E. DeMond, Nature, 309, 551 (1984).

  4. 4

    S. Osaki, Acta Arachnol., 37, 69 (1989).

  5. 5

    F. Vollrath and D. Edmonds, Nature, 340, 305 (1989).

  6. 6

    S. Osaki, Acta Arachnol., 38, 21 (1989).

  7. 7

    M. A. Becker, D. V. Mahoney, P. G. Lenhert, R. K. Eby, D. Kaplan, and W. W. Adams, “Silk Polymers,” ACS Symposium Series 544, Washington, D.C., 1995, p 185.

  8. 8

    P. M. Cunniff, S. A. Fossey, M. A. Auerbach and J. W. Song, “Silk Polymers,” ACS Symposium Series 544, Washington, D. C., 1995, p 234.

  9. 9

    A. M. Simmons, C. A. Michal, and L. W. Jelinski, Science, 271, 84 (1996).

  10. 10

    F. Vollrath and D. P. Knight, Nature, 29, 541 (2001).

  11. 11

    S. Osaki and R. Ishikawa, Polym. J., 34, 25 (2002).

  12. 12

    S. Osaki, Nature, 348, 419 (1996).

  13. 13

    S. Osaki, Int. J. Biol. Macromol., 24, 283 (1999).

  14. 14

    S. Osaki, Polym. J., 35, 261 (2003).

  15. 15

    M. Xu and R. V. Lewis, Proc. Natl. Acad. Sci. U.S.A., 87, 7120 (1990).

  16. 16

    M. B. Hinman and R. V. Lewis, J. Biol. Chem., 267, 19320 (1992).

  17. 17

    A. Lazaris, S. Arcidiacono, Y. Huang, J. F. Zhou, F. Duguay, N. Chretien, E. A. Welsh, J. W. Soares, and C. N. Karatzas, Science, 295, 472 (2002).

  18. 18

    J. A. Weil, J. R. Bolton, and J. E. Wertz, “Electron Paramagnetic Resonance,” Wiley-Interscience, New York, N.Y. (1994).

    Google Scholar 

  19. 19

    A. Kajiwara, A. K. Nanda, and K. Matyjaszewski, Macromolecules, 37, 1378 (2004).

  20. 20

    S. Osaki, Acta Arachnol., 43, 1 (1994).

  21. 21

    S. Osaki, Acta Arachnol., 46, 1 (1997).

  22. 22

    A. Rauk, D. Yu, J. Taylor, G. V. Shustov, D. A. Block, and D. A. Armstrong, Biochemistry, 38, 9089 (1999).

  23. 23

    G. D. Fasman, “Practical Handbook of Biochemistry and Molecular Biology,” CRC Press LLC, Boca Raton, FL, 1989, p 81.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osaki, S., Yamamoto, K., Kajiwara, A. et al. Evaluation of the Resistance of Spider Silk to Ultraviolet Irradiation. Polym J 36, 623–627 (2004). https://doi.org/10.1295/polymj.36.623

Download citation

Keywords

  • Resistance
  • Spider Silk
  • Ultraviolet Rays
  • Radicals
  • ESR

Further reading

Search

Quick links