Rheo-Optical Studies on the Deformation Mechanism of Semicrystalline Polymers. XIII. Uniaxial Deformation Mechanism of Polyethylene Spherulites as Observed by Orientation Distribution Function of Crystallites

Abstract

The crystal orientation behavior during stretching of a spherulitic high-density polyethylene was observed from the standpoint of changes in uniaxial orientation distribution functions qjj, 0) for 13 different (j-th) crystal planes and further w(ξ, 0, η) for crystallites (crystal grains) both as functions of the extension ratio of a bulk specimen. It was found that two populations develop in w(ξ, 0, η) at θ somewhat larger than 30° and η of 90° and at θ a little smaller than 30° and η of 0° and move to smaller values of θ to some extent, as the extension ratio was increased up to 1.4. The former population seemed to develop posteriorly but at a much greater rate than the latter population. The uniaxial deformation mechanism of polyethylene spherulites is discussed quantitatively by comparing the dependence of w(ξ, 0, η) upon the extension ratio with that calculated from a spherulite deformation model which combines the crystal lamellar orientation in affine fashion with the reorientation of the crystal grains within the orienting lamellae. The crystal reorientation mechanism may be represented by two preferential fashions which involve rotations of the crystal grains about their own a- or b-axes so as to orient their c-axes toward the stretching direction. The rotations of the crystal grains about the crystal a- or b-axes must be associated, respectively, with intra-lamellar shearing or lamellar detwisting and must be accentuated in the polar or equatorial zone of the uniaxially deformed spherulites to give the population at θ a little larger than 30° and η of 90° or at θ a little smaller than 30° and η of 0°.

References

  1. 1

    H. D. Keith and F. J. Padden, J. Polym. Sci., 41, 525 (1959).

  2. 2

    P. H. Geil, J. Polym. Sci., A-2, 3813 (1964).

  3. 3

    Z. W. Wilchinsky, Polymer, 5, 271 (1964).

  4. 4

    K. Sasaguri, S. Hoshino, and R. S. Stein, J. Appl. Phys., 35, 47 (1964).

  5. 5

    K. Sasaguri, R. Yamada, and R. S. Stein, J. Appl. Phys., 35, 3188 (1964).

  6. 6

    I. L. Hay and A. Keller, Kolloid Z. Z. Polym., 204, 43 (1965).

  7. 7

    T. Oda, S. Nomura, and H. Kawai, J. Polym. Sci., A, 3, 1993 (1965).

  8. 8

    T. Oda, N. Sakaguchi, and H. Kawai, J. Polym. Sci., C, 15, 223 (1966).

  9. 9

    K. Kobayashi and T. Nagasawa, J. Polym. Sci., C, 15, 163 (1966).

  10. 10

    R. S. Moore, J. Polym. Sci., A-2, 5, 711 (1967).

  11. 11

    A. Keller and M. J. Machin, J. Macromol. Sci., Phys., B1, 41 (1967).

  12. 12

    R. J. Samuels, J. Polym. Sci., C, 20, 253 (1967).

  13. 13

    R. J. Samuels, J. Polym. Sci., A-2, 6, 1101 (1968).

  14. 14

    R. G. Crystal and D. Hansen, J. Polym. Sci., A-2, 6, 981 (1968).

  15. 15

    T. Oda, N. Sakaguchi, and H. Kawai, Kobunshi Kagaku, 25, 588 (1968).

  16. 16

    T. Oda, M. Motegi, M. Moritani, and H. Kawai, Kobunshi Kagaku, 25, 639 (1968).

  17. 17

    C. A. Garber and E. S. Clark, J. Macromol. Sci., Phys., B4, 499 (1970).

  18. 18

    C. A. Garber and E. S. Clark, Intern. J. Polym. Mater., 1, 31 (1971).

  19. 19

    A. Peterlin, J. Mater. Sci., 6, 490 (1971).

  20. 20

    S. Nomura, A. Asanuma, S. Suehiro, and H. Kawai, J. Polym. Sci., A-2, 9, 1991 (1971).

  21. 21

    S. Nomura, M. Matsuo, and H. Kawai, J. Polym. Sci., Polym. Phys. Ed., 10, 2489 (1972).

  22. 22

    E. S. Clark, “Structure and Properties of Polymer Films,” R. W. Lenz and R. S. Stein, Ed., Plenum Press, New York, 1973.

    Google Scholar 

  23. 23

    B. S. Sprague, J. Macromol. Sci., Phys., B8, 157 (1973).

  24. 24

    T. Hashimoto, K. Nagatoshi, A. Todo, and H. Kawai, Polymer, 17, 1063 (1976).

  25. 25

    T. Hashimoto, K. Nagatoshi, A. Todo, and H. Kawai, Polymer, 17, 1075 (1976).

  26. 26

    M. Matsuo, K. Hirota, K. Fujita, and H. Kawai, Macromolecules, 11, 1000 (1978).

  27. 27

    K. Shimamura, S. Murakami, M. Tsuji, and K. Katayama, J. Soc. Rheol., Jpn., 7, 42 (1979).

  28. 28

    T. Tagawa and K. Ogura, J. Polym. Sci., Polym. Phys. Ed., 18, 971 (1980).

  29. 29

    T. Kyu, N. Yasuda, S. Suehiro, S. Nomura, and H. Kawai, Polym. J., 8, 565 (1976).

  30. 30

    S. Suehiro, T. Yamada, H. Inagaki, T. Kyu, S. Nomura, and H. Kawai, J. Polym. Sci., Polym. Phys. Ed., 17, 763 (1979).

  31. 31

    S. Suehiro, T. Kyu, K. Fujita, and H. Kawai, Polym. J., 11, 331 (1979).

  32. 32

    S. Suehiro, T. Yamada, T. Kyu, K. Fujita, T. Hashimoto, and H. Kawai, Polym. Eng. Sci., 19, 929 (1979).

  33. 33

    T. Kyu, N. Yasuda, S. Suehiro, T. Hashimoto, and H. Kawai, Polymer, 21, 1205 (1980).

  34. 34

    T. Kyu, S. Suehiro, S. Nomura, and H. Kawai, J. Polym. Sci., Polym. Phys. Ed., 18, 951 (1980).

  35. 35

    T. Kyu, S. Suehiro, and H. Kawai, Polym. J., 12, 251 (1980).

  36. 36

    T. Kyu, M. Yamada, S. Suehiro, and H. Kawai, Polym. J., 12, 809 (1980).

  37. 37

    S. Suehiro, T. Yamada, H. Inagaki, and H. Kawai, Polym. J., 10, 315 (1978).

  38. 38

    T. Kyu, N. Yasuda, M. Tabushi, S. Nomura, and H. Kawai, Polym. J., 8, 565 (1976).

  39. 39

    H. Kawai, T. Hashimoto, S. Suehiro, and T. Kyu, “The Strength and Stiffness of Polymers,” R. S. Porter Ed., Marcel Dekker Inc., New York, in press.

  40. 40

    H. Kawai, S. Suehiro, T. Kyu, and A. Shimomura, “Special Issue Commemorating the Tenth Anniversary of the Society of Rheology, Japan,” Polymer Engineering Reviews, submitted to.

  41. 41

    R. J. Roe and W. R. Krigbaum, J. Chem. Phys., 40, 2608 (1964).

  42. 42

    W. R. Krigbaum and R. J. Roe, J. Chem. Phys., 41, 737 (1964).

  43. 43

    R. J. Roe, J. Appl. Phys., 36, 2024 (1965).

  44. 44

    S. Nomura, H. Kawai, I. Kimura, and M. Kagiyama, J. Polym. Sci., A-2, 8, 383 (1970).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujita, Ki., Suehiro, S., Nomura, S. et al. Rheo-Optical Studies on the Deformation Mechanism of Semicrystalline Polymers. XIII. Uniaxial Deformation Mechanism of Polyethylene Spherulites as Observed by Orientation Distribution Function of Crystallites. Polym J 14, 545–562 (1982). https://doi.org/10.1295/polymj.14.545

Download citation

Keywords

  • Rheo-Optical Properties
  • High-Density Polyethylene
  • Deformation Mechanism of Spherulites
  • Orientation Distribution Function of Crystal Grains
  • Microparacrystallite Domain
  • Crystal Mosaic Block
  • Inter- and Intra-Lamellar Grain Boundary Phenomena

Further reading

Search

Quick links