Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Halogen-doped Cadmium Telluride for Detection of Gamma Rays

Abstract

DURING the past ten years the development of semiconductors for the detection of gamma rays has been proceeding at an accelerating pace, so that lithium drifted silicon detectors, as well as lithium drifted germanium detectors and undrifted germanium detector materials, are now commercially available. These materials have two important shortcomings: first, they must be operated at liquid nitrogen temperatures if they are to give their best performance (although Si is useful up to +40° C); and second, silicon in particular has a low absorption cross section for gamma rays because of its low atomic weight. So the use of heavier compound semiconductors with larger energy gaps, in particular CdTe, has been of substantial interest in the development of solid state nuclear detectors1,2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Dabbs, J. W. T., and Walter, F. J., Semiconductor Nuclear Particle Detectors (US National Academy of Sciences, Publication 871, Washington, DC, 1961).

    Google Scholar 

  2. Dearnaley, G., and Northrop, D. C., Semiconductor Counters for Nuclear Radiations (Spon, London, 1963).

    Google Scholar 

  3. Bertolini, G., and Cocher, A., Semiconductor Detectors (Wiley, New York, 1968).

    Google Scholar 

  4. Prince, M. B., and Polishuk, P., IEEE Trans. Nuclear Science, 14, 573 (1967).

    Article  Google Scholar 

  5. Mayer, J. W., J. Appl. Phys., 38, 296 (1967).

    Article  ADS  Google Scholar 

  6. Siffert, P., and Cornet, A., Proc. Internat. Symp. on Cadmium Telluride, A Material for Gamma-Ray Detectors (Centre de Recherches Nucleaires, Strasbourg, France, 1971).

    Google Scholar 

  7. Albers, W., in Phys. and Chem. of II-VI Compounds (edit. by Aven, M., and Prener, J. S.) (Wiley, New York, 1967).

    Google Scholar 

  8. Zanio, K., and Montano, H., Appl. Phys. Lett., 17, 49 (1970).

    Article  ADS  Google Scholar 

  9. Zanio, K., Neeland, J., and Montano, H., IEEE Trans. Nuclear Science, NS 17, 287 (1970).

    Article  ADS  Google Scholar 

  10. Kyle, N. R. J., Electrochem. Soc., 118, 1790 (1971).

    Article  Google Scholar 

  11. de Nobel, D., Philips Research Reports, 14, 361 (1959).

    Google Scholar 

  12. de Nobel, D., Philips Research Reports, 14, 430 (1959).

    Google Scholar 

  13. Bell, R. O., and Wald, E., in Proc. Internat. Symp. on Cadmium Telluride, A Material for Gamma-Ray Detectors (edit. by Siffert, P., and Cornet, A.) (Centre de Recherches Nucleaires, Strasbourg, France, 1971).

    Google Scholar 

  14. Roth, W. L., in Phys. and Chem. of II-VI Compounds (edit. by Aven, M., and Prener, J. S.) (Wiley, New York, 1967).

    Google Scholar 

  15. Canali, C., Ottavian, G., Zanio, K. R., and Quaranta, A., Nuclear Inst. and Meth., 96, 561 (1971).

    Article  ADS  Google Scholar 

  16. Ralph, H. I., and Hughes, F. O., Solid State Comm., 9, 1477 (1971).

    Article  ADS  Google Scholar 

  17. Bell, R. O., Hemmat, N., and Wald, E., Phys. Stat. Sol. (a), 1, 375 (1970).

    Article  ADS  Google Scholar 

  18. Strauss, A. J., in Proc. Internat. Symp. on Cadmium Telluride, A Material for Gamma-Ray Detectors (edit. by Siffert, P., and Cornet, A.) (Centre de Recherches Nucleaires, Strasbourg, France, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WALD, F., BELL, R. Halogen-doped Cadmium Telluride for Detection of Gamma Rays. Nature Physical Science 237, 13–15 (1972). https://doi.org/10.1038/physci237013a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/physci237013a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing