Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

Ethanol promotes cytotoxic effects of tumor necrosis factor-related apoptosis-inducing ligand through induction of reactive oxygen species in prostate cancer cells

Abstract

Background:

Effective treatment of prostate cancer (PCa) remains a major challenge due to chemoresistance to drugs including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Ethanol and ethanol extracts are known apoptosis inducers. However, cytotoxic effects of ethanol on PCa cells are unclear.

Methods:

In this study we utilized PC3 and LNCaP cell culture models. We used immunohistochemical analysis, western blot analysis, reactive oxygen species (ROS) measurement, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) Cell Proliferation Assay, Annexin-V staining and flow cytometry for quantification of apoptosis. In vitro soft agar colony formation and Boyden chamber invasion assays were used. Tumorigenicity was measured in a xenotransplantation mouse model.

Results:

Here, we demonstrate that ethanol enhances the apoptosis-inducing potential of TRAIL in androgen-resistant PC3 cells and sensitizes TRAIL-resistant, androgen sensitive LNCaP cells to apoptosis through caspase activation, and a complete cleavage of poly (ADP)-ribose polymerase, which was in association with increased production of ROS. The cytotoxicity of ethanol was suppressed by an antioxidant N-acetyl cystein pretreatment. Furthermore, ethanol in combination with TRAIL increased the expression of cyclin-dependent kinase inhibitor p21 and decreased the levels of Bcl-2 and phosphorylated-AKT. These molecular changes were accompanied by decreased proliferation, anchorage-independent growth and invasive potential of PC3 and LNCaP cells. In vivo studies using a xenotransplantation mouse model with PC3 cells demonstrated significantly increased apoptosis in tumors treated with ethanol and TRAIL in combination.

Conclusions:

Taken together, use of ethanol in combination with TRAIL may be an effective strategy to augment sensitivity to TRAIL-induced apoptosis in PCa cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  2. Gupta S . Prostate cancer chemoprevention: current status and future prospects. Toxicol Appl Pharmacol 2007; 224: 369–376.

    Article  CAS  PubMed  Google Scholar 

  3. Lassi K, Dawson NA . Update on castrate-resistant prostate cancer. Curr Opin Oncol 2010; 22: 263–267.

    Article  PubMed  Google Scholar 

  4. Bruckheimer EM, Kyprianou N . Apoptosis in prostate carcinogenesis. A growth regulator and a therapeutic target. Cell Tissue Res 2000; 301: 153–162.

    Article  CAS  PubMed  Google Scholar 

  5. Wang G, Reed E, Li QQ . Apoptosis in prostate cancer: progressive and therapeutic implications (Review). Int J Mol Med 2004; 14: 23–34.

    CAS  PubMed  Google Scholar 

  6. Uzzo RG, Haas NB, Crispen PL, Kolenko VM . Mechanisms of apoptosis resistance and treatment strategies to overcome them in hormone-refractory prostate cancer. Cancer 2008; 112: 1660–1671.

    Article  CAS  PubMed  Google Scholar 

  7. Kruyt FA . TRAIL and cancer therapy. Cancer Lett 2008; 263: 14–25.

    Article  CAS  PubMed  Google Scholar 

  8. Holoch PA, Griffith TS . TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 2009; 625: 63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hesry V, Piquet-Pellorce C, Travert M, Donaghy L, Jégou B, Patard JJ et al. Sensitivity of prostate cells to TRAIL-induced apoptosis increases with tumor progression: DR5 and caspase 8 are key players. Prostate 2006; 66: 987–995.

    Article  CAS  PubMed  Google Scholar 

  10. Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB . Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther 2010; 9: 856–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bucur O, Ray S, Bucur MC, Almasan A . APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy. Front Biosci 2006; 11: 1549–1568.

    Article  CAS  PubMed  Google Scholar 

  12. Shankar S, Chen X, Srivastava RK . Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 2005; 62: 165–186.

    Article  CAS  Google Scholar 

  13. Ng CP, Zisman A, Bonavida B . Synergy is achieved by complementation with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 2002; 53: 286–299.

    Article  CAS  PubMed  Google Scholar 

  14. Dai Y, Liu M, Tang W, Li Y, Lian J, Lawrence TS et al. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB. BMC Cancer 2009; 9: 392.

    Article  PubMed  PubMed Central  Google Scholar 

  15. VanOosten RL, Earel JK, Griffith TS . Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 2007; 12: 561–571.

    Article  CAS  PubMed  Google Scholar 

  16. Siddiqui A, Malik A, Adhami VM, Asim M, Hafeez BB, Sarfaraz S et al. Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 2008; 27: 2055–2063.

    Article  CAS  PubMed  Google Scholar 

  17. Hu H, Jiang C, Schuster T, Li GX, Daniel PT, Lü J . Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway. Mol Cancer Ther 2006; 5: 1873–1882.

    Article  CAS  PubMed  Google Scholar 

  18. Nimmanapalli R, Perkins CL, Orlando M, O’Bryan E, Nguyen D, Bhalla KN . Pretreatment with paclitaxel enhances Apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 2001; 61: 759–763.

    CAS  PubMed  Google Scholar 

  19. Deeb D, Jiang H, Gao X, Al-Holou S, Danyluk AL, Dulchavsky SA et al. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther 2007; 321: 616–625.

    Article  CAS  PubMed  Google Scholar 

  20. Higuchi H, Adachi M, Miura S, Gores GJ, Neuman MG, Shear NH et al. Ethanol-induced apoptosis in vitro. Clin Biochem 1999; 32: 547–555.

    Article  Google Scholar 

  21. Kapasi AA, Patel G, Goenka A, Nahar N, Modi N, Bhaskaran M et al. Singhal Ethanol promotes T cell apoptosis through the mitochondrial pathway. Immunology 2003; 108: 313–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nurmi K, Methuen T, Mäki T, Lindstedt KA, Kovanen PT, Sandler C et al. Ethanol induces apoptosis in human mast cells. Life Sci 2009; 85: 678–684.

    Article  CAS  PubMed  Google Scholar 

  23. Arzumanyan A, Anni H, Rubin R, Rubin E . Effects of Ethanol on Mouse Embryonic Stem Cells. Alcohol Clin Exp Res 2009; 33: 2172–2179.

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira-da-Silva A, Vieira FB, Cristina-Rodrigues F, Filgueiras CC, Manhães AC, Abreu-Villaça Y . Increased apoptosis and reduced neuronal and glial densities in the hippocampus due to nicotine and ethanol exposure in adolescent mice. Int J Dev Neurosci 2009; 27: 539–548.

    Article  CAS  PubMed  Google Scholar 

  25. Castaneda F, Kinne RK . Ethanol treatment of hepatocellular carcinoma: high potentials of low concentrations. Cancer Biol Ther 2004; 5: 430–433.

    Article  Google Scholar 

  26. Idrus NM, Napper RM . Acute and long-term purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat. Alcohol Clin Exp Res 2012; 8: 1365–1373.

    Article  Google Scholar 

  27. Flora SJ, Gautam P, Kushwaha P . Lead and ethanol co-exposure lead to blood oxidative stress and subsequent neuronal apoptosis in rats. Alcohol 2012; 47: 92–101.

    Article  CAS  Google Scholar 

  28. Das SK, Vasudevan DM . Alcohol-induced oxidative stress. Life Sci. 2007; 81: 177–187.

    Article  CAS  PubMed  Google Scholar 

  29. Olney JW, Ishimaru MJ, Bittigau P, Ikonomidou C . Ethanol-induced apoptotic neurodegeneration in the developing brain. Apoptosis 2000; 5: 515–521.

    Article  CAS  PubMed  Google Scholar 

  30. Luo J, Miller MW . Ethanol inhibits basic fibroblast growth factor-mediated proliferation of C6 astrocytoma cells. J Neurochem 1996; 67: 1448–1456.

    Article  CAS  PubMed  Google Scholar 

  31. McVicker BL, Tuma PL, Kharbanda KK, Lee SM, Tuma DJ . Tuma Relationship between oxidative stress and hepatic glutathione levels in ethanol-mediated apoptosis of polarized hepatic cells. World J Gastroenterol 2009; 15: 2609–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cherian PP, Schenker S, Henderson GI . Ethanol-mediated DNA damage and PARP-1 apoptotic responses in cultured fetal cortical neurons. Alcohol Clin Exp Res 2008; 32: 1884–1892.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoek JB, Cahill A, Pastorino JG . Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 2002; 122: 2049–2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen G, Ma C, Bower KA, Shi X, Ke Z, Luo J . Ethanol promotes endoplasmic reticulum stress-induced neuronal death: involvement of oxidative stress. J Neurosci Res 2008; 86: 937–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plante MK, Marks LS, Anderson R, Amling C, Rukstalis D, Badlani G et al. Phase I/II examination of transurethral ethanol ablation of the prostate for the treatment of symptomatic benign prostatic hyperplasia. J Urol 2007; 177: 1030–1035 discussion 1035.

    Article  CAS  PubMed  Google Scholar 

  36. Kim ED . Ethanol injection for the treatment of benign prostatic hyperplasia. Curr Urol Rep 2002; 3: 276–279.

    Article  PubMed  Google Scholar 

  37. Savoca G, De Stefani S, Gattuccio I, Paolinelli D, Stacul F, Belgrano E . Percutaneous ethanol injection of the prostate as minimally invasive treatment for benign prostatic hyperplasia: preliminary report. Eur Urol 2001; 40: 504–508.

    Article  CAS  PubMed  Google Scholar 

  38. Vaculová A, Hofmanová J, Soucek K, Andera L, Kozubík A . Ethanol acts as a potent agent sensitizing colon cancer cells to the TRAIL-induced apoptosis. FEBS Lett 2004; 577: 309–313.

    Article  PubMed  Google Scholar 

  39. Moulin M, Carpentier S, Levade T, Arrigo AP . Potential roles of membrane fluidity and ceramide in hyperthermia and alcohol stimulation of TRAIL apoptosis. Apoptosis 2007; 12: 1703–1720.

    Article  CAS  PubMed  Google Scholar 

  40. Wesley UV, McGroarty M, Homoyouni A . Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 2005; 65: 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001; 20: 6073–6083.

    Article  CAS  PubMed  Google Scholar 

  42. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS . Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 2001; 276: 10767–10774.

    Article  CAS  PubMed  Google Scholar 

  43. Peuhu E, Rivero-Müller A, Stykki H, Torvaldson E, Holmbom T, Eklund P et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene. 2010 11 29: 898–908.

    CAS  Google Scholar 

  44. Dieterle A, Orth R, Daubrawa M, Grotemeier A, Alers S, Ullrich S et al. The Akt inhibitor triciribine sensitizes prostate carcinoma cells to TRAIL-induced apoptosis. Int J Cancer 2009; 125: 932–941.

    Article  CAS  Google Scholar 

  45. Prasad S, Yadav VR, Ravindran J, Aggarwal BB . ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through Induction of death receptors and downregulation of cell survival proteins. Cancer Res 2011; 71: 538–549.

    Article  CAS  PubMed  Google Scholar 

  46. Zafarullah M, Li WQ, Sylvester J, Ahmad M . Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 2003; 60: 6–20.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Fang B . Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005; 12: 228–237.

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Zhou JY, Wei WZ, Wu GS . Activation of the Akt survival pathway contributes to TRAIL resistance in cancer cells. PLoS One 2010; 5: e10226.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fulda S, Meyer E, Debatin KM . Inhibition of TRAIL-induced apoptosis by Bcl-2 over-expression. Oncogene 2002; 21: 2283–2294.

    Article  CAS  PubMed  Google Scholar 

  50. Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC . Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2004; 11: 915–923.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Lake Champlain Cancer Research Organization (LCCRO) at the University of Vermont, Burlington, VT, Department of Neurosurgery, University of Wisconsin, Madison, WI, and NEAUA post residency research scholarship award. We thank Core Facilities of COBRE-Neuroscience (2P20RR16435-6) and Vermont Cancer Center (VCC) DNA analysis and Flow Cytometry Facility for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U V Wesley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plante, M., Arscott, W., Folsom, J. et al. Ethanol promotes cytotoxic effects of tumor necrosis factor-related apoptosis-inducing ligand through induction of reactive oxygen species in prostate cancer cells. Prostate Cancer Prostatic Dis 16, 16–22 (2013). https://doi.org/10.1038/pcan.2012.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2012.37

Keywords

This article is cited by

Search

Quick links