Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior

Abstract

It is currently estimated that inflammatory responses are linked to 15–20% of all deaths from cancer worldwide. Although many studies point to an important role of inflammation in prostate growth, the contribution of inflammation to castration-resistant prostate cancer is not completely understood. The presence of inflammatory mediators in tumor microenvironment raises the question whether genetic events that participate in cancer development and progression are responsible for the inflammatory milieu inside and surrounding tumors. Activated oncogenes, cytokines, chemokines and their receptors, sustained oxidative stress and antioxidant imbalance share the capacity to orchestrate these pro-inflammatory programs; however, the diversity of the inflammatory cell components will determine the final response in the prostate tissue. These observations give rise to the concept that early genetic events generate an inflammatory microenvironment promoting prostate cancer progression and creating a continuous loop that stimulates a more aggressive stage. It is imperative to dissect the molecular pathologic mechanism of inflammation involved in the generation of the castration-resistant phenotype in prostate cancer. Here, we present a hypothesis where molecular signaling triggered by inflammatory mediators may evolve in prostate cancer progression. Thus, treatment of chronic inflammation may represent an important therapeutic target in advanced prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  3. Mercader M, Bodner BK, Moser MT, Kwon PS, Park ES, Manecke RG et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci USA 2001; 98: 14565–14570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M . B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 2010; 464: 302–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Terada N, Shimizu Y, Kamba T, Inoue T, Maeno A, Kobayashi T et al. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res 2010; 70: 1606–1615.

    Article  CAS  PubMed  Google Scholar 

  6. Matsuoka T, Narumiya S . The roles of prostanoids in infection and sickness behaviors. J Infect Chemother 2008; 14: 270–278.

    Article  CAS  PubMed  Google Scholar 

  7. Hull MA, Ko SC, Hawcroft G . Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer? Mol Cancer Ther 2004; 3: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  8. Attard G, Reid AH, Olmos D, de Bono JS . Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven. Cancer Res 2009; 69: 4937–4940.

    Article  CAS  PubMed  Google Scholar 

  9. Bonkhoff H, Berges R . From pathogenesis to prevention of castration resistant prostate cancer. Prostate 2010; 70: 100–112.

    Article  CAS  PubMed  Google Scholar 

  10. Bonkhoff H, Berges R . The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol 2009; 55: 533–542.

    Article  CAS  PubMed  Google Scholar 

  11. Dutt SS, Gao AC . Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol 2009; 5: 1403–1413.

    Article  CAS  PubMed  Google Scholar 

  12. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK . Oxidative stress in prostate cancer. Cancer Lett 2009; 282: 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chetram MA, Odero-Marah V, Hinton CV . Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res 2011; 9: 90–102.

    Article  CAS  PubMed  Google Scholar 

  14. Vandercappellen J, Van Damme J, Struyf S . The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008; 267: 226–244.

    Article  CAS  PubMed  Google Scholar 

  15. Thobe MN, Clark RJ, Bainer RO, Prasad SM, Rinker-Schaeffer CW . From prostate to bone: key players in prostate cancer bone metastasis. Cancers (Basel) 2011; 3: 478–493.

    Article  Google Scholar 

  16. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Loberg R, Taichman RS . The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 2006; 25: 573–587.

    Article  CAS  PubMed  Google Scholar 

  18. Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 2006; 66: 32–48.

    Article  CAS  PubMed  Google Scholar 

  19. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK . Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62: 1832–1837.

    CAS  PubMed  Google Scholar 

  20. Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A . CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 2004; 64: 4693–4698.

    Article  CAS  PubMed  Google Scholar 

  21. Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC . Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 2005; 65: 9891–9898.

    Article  CAS  PubMed  Google Scholar 

  22. Engl T, Relja B, Marian D, Blumenberg C, Muller I, Beecken WD et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 2006; 8: 290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun YX, Fang M, Wang J, Cooper CR, Pienta KJ, Taichman RS . Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 2007; 67: 61–73.

    Article  CAS  PubMed  Google Scholar 

  24. Xing Y, Liu M, Du Y, Qu F, Li Y, Zhang Q et al. Tumor cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing approach. Cancer Biol Ther 2008; 7: 1839–1848.

    Article  CAS  PubMed  Google Scholar 

  25. Frigo DE, Sherk AB, Wittmann BM, Norris JD, Wang Q, Joseph JD et al. Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 2009; 23: 1385–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai J, Kandagatla P, Singareddy R, Kropinski A, Sheng S, Cher ML et al. Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol 2010; 3: 195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 2009; 69: 1400–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toubaji A, Albadine R, Meeker AK, Isaacs WB, Lotan T, Haffner MC et al. Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas. Mod Pathol 2011; 24: 1511–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H . Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 2008; 99: 539–542.

    Article  CAS  PubMed  Google Scholar 

  30. Begley LA, MacDonald JW, Day ML, Macoska JA . CXCL12 activates a robust transcriptional response in human prostate epithelial cells. J Biol Chem 2007; 282: 26767–26774.

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ, Mehra R et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 2008; 283: 4283–4294.

    Article  CAS  PubMed  Google Scholar 

  32. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Fruh K et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res 2005; 65: 5084–5095.

    Article  CAS  PubMed  Google Scholar 

  34. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 2007; 104: 15735–15740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh RK, Lokeshwar BL . The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res 2011; 71: 3268–3277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehrer S, Diamond EJ, Mamkine B, Stone NN, Stock RG . Serum interleukin-8 is elevated in men with prostate cancer and bone metastases. Technol Cancer Res Treat 2004; 3: 411.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Lu Y, Koch AE, Zhang J, Taichman RS . CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res 2008; 68: 10367–10376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ha HK, Lee W, Park HJ, Lee SD, Lee JZ, Chung MK . Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer. Mol Med Report 2011; 4: 419–424.

    CAS  Google Scholar 

  39. Chandrasekar B, Bysani S, Mummidi S . CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, I kappa B kinase, and nuclear factor-kappa B and induces cell-cell adhesion and aortic smooth muscle cell proliferation. J Biol Chem 2004; 279: 3188–3196.

    Article  CAS  PubMed  Google Scholar 

  40. Deng L, Chen N, Li Y, Zheng H, Lei Q . CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta 2010; 1806: 42–49.

    CAS  PubMed  Google Scholar 

  41. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O . Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 2003; 170: 1136–1140.

    Article  CAS  PubMed  Google Scholar 

  42. Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res 2000; 6: 2104–2119.

    CAS  PubMed  Google Scholar 

  43. Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ . Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia 2001; 3: 33–42.

    Article  CAS  PubMed  Google Scholar 

  44. Lamont KR, Tindall DJ . Minireview: alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol 2011; 25: 897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waugh DJ, Wilson C . The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735–6741.

    Article  CAS  PubMed  Google Scholar 

  46. McCarron SL, Edwards S, Evans PR, Gibbs R, Dearnaley DP, Dowe A et al. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res 2002; 62: 3369–3372.

    CAS  PubMed  Google Scholar 

  47. Wilson C, Purcell C, Seaton A, Oladipo O, Maxwell PJ, O’Sullivan JM et al. Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis. J Pharmacol Exp Ther 2008; 327: 746–759.

    Article  CAS  PubMed  Google Scholar 

  48. Tassidis H, Culig Z, Wingren AG, Harkonen P . Role of the protein tyrosine phosphatase SHP-1 in Interleukin-6 regulation of prostate cancer cells. Prostate 2010; 70: 1491–1500.

    Article  CAS  PubMed  Google Scholar 

  49. Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM . Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 2001; 58: 1008–1015.

    Article  CAS  PubMed  Google Scholar 

  50. Blaszczyk N, Masri BA, Mawji NR, Ueda T, McAlinden G, Duncan CP et al. Osteoblast-derived factors induce androgen-independent proliferation and expression of prostate-specific antigen in human prostate cancer cells. Clin Cancer Res 2004; 10: 1860–1869.

    Article  CAS  PubMed  Google Scholar 

  51. Culig Z, Steiner H, Bartsch G, Hobisch A . Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 2005; 95: 497–505.

    Article  CAS  PubMed  Google Scholar 

  52. Ishiguro H, Akimoto K, Nagashima Y, Kojima Y, Sasaki T, Ishiguro-Imagawa Y et al. aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci USA 2009; 106: 16369–16374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malinowska K, Neuwirt H, Cavarretta IT, Bektic J, Steiner H, Dietrich H et al. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer 2009; 16: 155–169.

    Article  CAS  PubMed  Google Scholar 

  54. Chun JY, Nadiminty N, Dutt S, Lou W, Yang JC, Kung HJ et al. Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 2009; 15: 4815–4822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Y, Zhou BP . TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010; 102: 639–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davis JS, Nastiuk KL, Krolewski JJ . TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable. Mol Endocrinol 2011; 25: 611–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shukla S, MacLennan GT, Fu P, Patel J, Marengo SR, Resnick MI et al. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 2004; 6: 390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 2008; 68: 6762–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ . Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20: 4188–4197.

    Article  CAS  PubMed  Google Scholar 

  60. Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ et al. The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells. J Cell Sci 2002; 115: 141–151.

    CAS  PubMed  Google Scholar 

  61. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  62. Mantovani A . Cancer: inflaming metastasis. Nature 2009; 457: 36–37.

    Article  CAS  PubMed  Google Scholar 

  63. Shiota M, Yokomizo A, Tada Y, Inokuchi J, Kashiwagi E, Masubuchi D et al. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression. Oncogene 2010; 29: 237–250.

    Article  CAS  PubMed  Google Scholar 

  64. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA . Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009; 30: 2–10.

    Article  CAS  PubMed  Google Scholar 

  65. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 2003; 21: 2673–2678.

    Article  CAS  PubMed  Google Scholar 

  66. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T . Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  67. Murakami S, Noguchi T, Takeda K, Ichijo H . Stress signaling in cancer. Cancer Sci 2007; 98: 1521–1527.

    Article  CAS  PubMed  Google Scholar 

  68. Gort EH, van Haaften G, Verlaan I, Groot AJ, Plasterk RH, Shvarts A et al. The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene 2008; 27: 1501–1510.

    Article  CAS  PubMed  Google Scholar 

  69. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 2004; 64: 5270–5282.

    Article  CAS  PubMed  Google Scholar 

  70. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  71. Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 2000; 89: 123–134.

    Article  CAS  PubMed  Google Scholar 

  72. Best CJ, Gillespie JW, Yi Y, Chandramouli GV, Perlmutter MA, Gathright Y et al. Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 2005; 11: 6823–6834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharifi N, Hurt EM, Thomas SB, Farrar WL . Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer. Clin Cancer Res 2008; 14: 6073–6080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tam NN, Gao Y, Leung YK, Ho SM . Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am J Pathol 2003; 163: 2513–2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pang ST, Dillner K, Wu X, Pousette A, Norstedt G, Flores-Morales A . Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology 2002; 143: 4897–4906.

    Article  CAS  PubMed  Google Scholar 

  76. Eliceiri BP . Integrin and growth factor receptor crosstalk. Circ Res 2001; 89: 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  77. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S . Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995; 9: 2723–2735.

    Article  CAS  PubMed  Google Scholar 

  78. Karin M, Cao Y, Greten FR, Li ZW . NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    Article  CAS  PubMed  Google Scholar 

  79. Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH . Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 2007; 67: 3310–3319.

    Article  CAS  PubMed  Google Scholar 

  80. Ryter SW, Choi AM . Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid Redox Signal 2002; 4: 625–632.

    Article  CAS  PubMed  Google Scholar 

  81. Min KJ, Lee JT, Joe EH, Kwon TK . An IkappaBalpha phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-kappaB-independent mechanism. Cell Signal 2011; 23: 1505–1513.

    Article  CAS  PubMed  Google Scholar 

  82. Sacca P, Meiss R, Casas G, Mazza O, Calvo JC, Navone N et al. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer 2007; 97: 1683–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 2007; 282: 20621–20633.

    Article  CAS  PubMed  Google Scholar 

  84. Lin QS, Weis S, Yang G, Zhuang T, Abate A, Dennery PA . Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic Biol Med 2008; 44: 847–855.

    Article  CAS  PubMed  Google Scholar 

  85. Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B et al. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res 2009; 7: 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  86. Ferrando M, Gueron G, Elguero B, Giudice J, Salles A, Leskow FC et al. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis 2011; 14: 467–479.

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Su J, DingZhang X, Zhang J, Yoshimoto M, Liu S et al. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J Pathol 2011; 224: 90–100.

    Article  CAS  PubMed  Google Scholar 

  88. Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 2010; 29: 811–821.

    Article  CAS  PubMed  Google Scholar 

  89. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 2006; 12: 6213s–6216s.

    Article  CAS  PubMed  Google Scholar 

  90. Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC . RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 2008; 68: 92–104.

    Article  CAS  PubMed  Google Scholar 

  91. Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 2005; 65: 11001–11009.

    Article  CAS  PubMed  Google Scholar 

  92. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 2007; 67: 6854–6862.

    Article  CAS  PubMed  Google Scholar 

  93. Li ZG, Yang J, Vazquez ES, Rose D, Vakar-Lopez F, Mathew P et al. Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone. Oncogene 2008; 27: 596–603.

    Article  CAS  PubMed  Google Scholar 

  94. Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy Jr JD et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 2007; 21: 486–498.

    Article  CAS  PubMed  Google Scholar 

  95. Hall CL, Kang S, MacDougald OA, Keller ET . Role of Wnts in prostate cancer bone metastases. J Cell Biochem 2006; 97: 661–672.

    Article  CAS  PubMed  Google Scholar 

  96. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA . Molecular biology of bone metastasis. Mol Cancer Ther 2007; 6: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  97. Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest 2008; 118: 2697–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9–34.

    Article  CAS  PubMed  Google Scholar 

  99. Morgia G, Falsaperla M, Malaponte G, Madonia M, Indelicato M, Travali S et al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. Urol Res 2005; 33: 44–50.

    Article  CAS  PubMed  Google Scholar 

  100. Selvamurugan N, Jefcoat SC, Kwok S, Kowalewski R, Tamasi JA, Partridge NC . Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. J Cell Biochem 2006; 99: 545–557.

    Article  CAS  PubMed  Google Scholar 

  101. Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL et al. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 2006; 25: 589–600.

    Article  CAS  PubMed  Google Scholar 

  102. Dunn LK, Mohammad KS, Fournier PG, McKenna CR, Davis HW, Niewolna M et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One 2009; 4: e6896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang Q, McHugh KP, Patntirapong S, Gu X, Wunderlich L, Hauschka PV . VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biol 2008; 27: 589–599.

    Article  CAS  PubMed  Google Scholar 

  104. Dai J, Kitagawa Y, Zhang J, Yao Z, Mizokami A, Cheng S et al. Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 2004; 64: 994–999.

    Article  CAS  PubMed  Google Scholar 

  105. Weilbaecher KN, Guise TA, McCauley LK . Cancer to bone: a fatal attraction. Nat Rev Cancer 2011; 11: 411–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Drake JM, Danke JR, Henry MD . Bone-specific growth inhibition of prostate cancer metastasis by atrasentan. Cancer Biol Ther 2010; 9: 607–614.

    Article  CAS  PubMed  Google Scholar 

  107. Fontana A, Galli L, Fioravanti A, Orlandi P, Galli C, Landi L et al. Clinical and pharmacodynamic evaluation of metronomic cyclophosphamide, celecoxib, and dexamethasone in advanced hormone-refractory prostate cancer. Clin Cancer Res 2009; 15: 4954–4962.

    Article  CAS  PubMed  Google Scholar 

  108. Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 2010; 109: 726–736.

    CAS  PubMed  Google Scholar 

  109. Zayzafoon M, Abdulkadir SA, McDonald JM . Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 2004; 279: 3662–3670.

    Article  CAS  PubMed  Google Scholar 

  110. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004; 64: 6854–6857.

    Article  CAS  PubMed  Google Scholar 

  111. Bin Hafeez B, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res 2009; 15: 452–459.

    Article  CAS  PubMed  Google Scholar 

  112. Pazolli E, Luo X, Brehm S, Carbery K, Chung JJ, Prior JL et al. Senescent stromal-derived osteopontin promotes preneoplastic cell growth. Cancer Res 2009; 69: 1230–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 2008; 133: 994–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anborgh PH, Mutrie JC, Tuck AB, Chambers AF . Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med 2010; 14: 2037–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 2005; 7: 485–496.

    Article  CAS  PubMed  Google Scholar 

  116. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res 2009; 69: 1685–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang Y, Forootan SS, Kamalian L, Bao ZZ, Malki MI, Foster CS et al. Suppressing tumourigenicity of prostate cancer cells by inhibiting osteopontin expression. Int J Oncol 2011; 38: 1083–1091.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Vazquez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueron, G., De Siervi, A. & Vazquez, E. Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer Prostatic Dis 15, 213–221 (2012). https://doi.org/10.1038/pcan.2011.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.64

Keywords

This article is cited by

Search

Quick links