Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Research

18F-fluorocholine for prostate cancer imaging: a systematic review of the literature

Abstract

BACKGROUND: Positron emission tomography (PET or combined PET-computed tomography (PET/CT)) allows the non-invasive interrogation of metabolic processes using radiolabeled probes. Altered choline metabolism has been noted as a characteristic of prostate cancer (PCa), and radiolabeled choline and choline analogs have been investigated as PET/CT imaging agents for prostate cancer; [18F]fluoromethyl-dimethyl-2-hydroxyethyl-ammonium (18F-FCH) shows particular promise as a PCa imaging agent given its favorable physical and pharmacokinetic properties.

METHODS: We conducted a systematic review of results to date with 18F-FCH. As the tracer was first described by DeGrado in 2001, we limited our search from January 2001 to August 2011.

RESULTS: In all, 37 studies including 1244 patients met the inclusion criteria. Studies included those detailing the radiosynthesis of 18F-FCH, preclinical and early clinical dosimetry, and biodistribution (n=7); evaluation of local disease (n=6), nodal disease (n=5), bone metastases and castrate-resistant disease (n=7), biochemical recurrence (n=11), radiotherapy planning (n=7) and sources of false-positive studies (n=2); and some studies reported on multiple indications. Potential sources of variations in the studies affecting reported performance included case series size, variation in extent of disease at imaging (including Gleason grade, and PSA), selection of gold standards for comparison and variations in scan technique.

CONCLUSIONS: On the basis of the review, we suggest potential scenarios where this metabolic imaging might be considered for further evaluation in clinical trials for guiding PCa management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chappell H, De P, Dryer D, Ellison L, Logan H, MacIntyre M et al. Canadian Cancer Statistics, 2011. Canadian Cancer Society, Statistics Canada, Provincial/Territorial Cancer Registries, Public Health Agency of Canada 2011. www.cancer.ca.

  2. Jang TL, Han M, Roehl KA, Hawkins SA, Catalona WJ . More favorable tumor features and progression-free survival rates in a longitudinal prostate cancer screening study: PSA era and threshold-specific effects. Urology 2006; 67: 343–348.

    Article  Google Scholar 

  3. Stamey TA, Caldwell M, McNeal JE, Nolley R, Hemenez M, Downs J . The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J Urol 2004; 172: 1297–1301.

    Article  Google Scholar 

  4. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT . Imaging prostate cancer: a multidisciplinary perspective. Radiology 2007; 243: 28–53.

    Article  Google Scholar 

  5. Oehr P, Bouchelouche K . Imaging of prostate cancer. Curr Opin Oncol 2007; 19: 259–264.

    Article  Google Scholar 

  6. Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ . Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol 2011; 12: 181–191.

    Article  Google Scholar 

  7. Mattei A, Danuser H . Contemporary imaging analyses of pelvic lymph nodes in the prostate cancer patient. Curr Opin Urol 2011; 21: 211–218.

    Article  Google Scholar 

  8. Podoloff DA, Ball DW, Ben-Josef E, Benson III AB, Cohen SJ, Coleman RE ; et al. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw 2009; 7 (Suppl 2): S1–26 (review).

    Article  Google Scholar 

  9. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G . Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 1996; 155: 994–948.

    Article  CAS  Google Scholar 

  10. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK . Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 2001; 57: 108–111.

    Article  CAS  Google Scholar 

  11. Shreve PD, Grossman HB, Gross MD, Wahl RL . Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 1996; 199: 751–756.

    Article  CAS  Google Scholar 

  12. Apolo AB, Pandit-Taskar N, Morris MJ . Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 2008; 49: 2031–2041.

    Article  Google Scholar 

  13. Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 2007; 48: 56–63.

    CAS  PubMed  Google Scholar 

  14. Jadvar H . Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 2011; 52: 81–89.

    Article  Google Scholar 

  15. Leung K . [11C]Choline. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. National Center for Biotechnology Information (US): Bethesda, MD, 2004–2011.

    Google Scholar 

  16. Leung K . [18F]Fluorocholine. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. National Center for Biotechnology Information (US): Bethesda, MD, 2004–2011.

    Google Scholar 

  17. de Certaines JD, Larsen VA, Podo F, Carpinelli G, Briot O, Henriksen O . In vivo 31P MS of experimental tumours. NMR Biomed 1993; 6: 345–365.

    Article  CAS  Google Scholar 

  18. Negendank W . Studies of human tumors by MRS: a review. NMR Biomed 1992; 5: 303–324.

    Article  CAS  Google Scholar 

  19. Rumsby M, Schmitt J, Sharrard M, Rodrigues G, Stower M, Maitland N . Human prostate cell lines from normal and tumourigenic epithelia differ in the pattern and control of choline lipid headgroups released into the medium on stimulation of protein kinase C. Br J Cancer 2011; 104: 673–684.

    Article  CAS  Google Scholar 

  20. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001; 61: 110–117.

    CAS  PubMed  Google Scholar 

  21. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42: 1805–1814.

    CAS  PubMed  Google Scholar 

  22. DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE . Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002; 43: 92–96.

    CAS  PubMed  Google Scholar 

  23. Uusijarvi H, Nilsson LE, Bjartell A, Mattsson S . Biokinetics of 18F-choline studied in four prostate cancer patients. Radiat Prot Dosimetry 2010; 139: 240–244.

    Article  CAS  Google Scholar 

  24. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR . Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168: 273–280.

    Article  Google Scholar 

  25. Kryza D, Tadino V, Filannino MA, Villeret G, Lemoucheux L . Fully automated [18F]fluorocholine synthesis in the TracerLab MX FDG coincidence synthesizer. Nucl Med Biol 2008; 35: 255–260.

    Article  CAS  Google Scholar 

  26. Shao X, Hockley BG, Hoareau R, Schnau PL, Scott PJ . Fully automated preparation of [11C]choline and [18F]fluoromethylcholine using TracerLab synthesis modules and facilitated quality control using analytical HPLC. Appl Radiat Isot 2011; 69: 403–409.

    Article  CAS  Google Scholar 

  27. Kwee SA, Coel MN, Lim J, Ko JP . Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 2005; 173: 252–255.

    Article  Google Scholar 

  28. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN . Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006; 47: 262–269.

    PubMed  Google Scholar 

  29. Kwee SA, Thibault GP, Stack RS, Coel MN, Furusato B, Sesterhenn IA . Use of step-section histopathology to evaluate (18)F-fluorocholine PET sextant localization of prostate cancer. Mol Imag 2008; 7: 12–20.

    Article  Google Scholar 

  30. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010; 254: 925–933.

    Article  Google Scholar 

  31. Igerc I, Kohlfurst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I et al. The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imag 2008; 35: 976–983.

    Article  CAS  Google Scholar 

  32. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005; 235: 623–628.

    Article  Google Scholar 

  33. Poulsen MH, Bouchelouche K, Gerke O, Petersen H, Svolgaard B, Marcussen N et al. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. BJU Int 2010; 106: 639–643; discussion 44.

    Article  Google Scholar 

  34. Beauregard JM, Williams SG, Degrado TR, Roselt P, Hicks RJ . Pilot comparison of F-fluorocholine and F-fluorodeoxyglucose PET/CT with conventional imaging in prostate cancer. J Med Imag Radiat Oncol 2010; 54: 325–332.

    Article  Google Scholar 

  35. Hacker A, Jeschke S, Leeb K, Prammer K, Ziegerhofer J, Sega W et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 2006; 176: 2014–2018; discussion 8–9.

    Article  Google Scholar 

  36. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imag 2008; 35: 253–263.

    Article  Google Scholar 

  37. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imag 2008; 35: 1766–1774.

    Article  Google Scholar 

  38. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imag Biol 2009; 11: 446–454.

    Article  Google Scholar 

  39. Kwee SA, Coel MN, Ly BH, Lim J . (18)F-choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med 2009; 23: 541–548.

    Article  CAS  Google Scholar 

  40. Langsteger W, Balogova S, Huchet V, Beheshti M, Paycha F, Egrot C et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 2011; 55: 448–457.

    CAS  PubMed  Google Scholar 

  41. Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imag 2006; 33: 1387–1398.

    Article  Google Scholar 

  42. Heinisch M, Dirisamer A, Loidl W, Stoiber F, Gruy B, Haim S et al. Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml? Mol Imag Biol 2006; 8: 43–48.

    Article  Google Scholar 

  43. Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 2008; 113: 895–904.

    Article  CAS  Google Scholar 

  44. Steiner C, Vees H, Zaidi H, Wissmeyer M, Berrebi O, Kossovsky MP et al. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence. Nuklearmedizin 2009; 48: 1–9; quiz N2–3.

    Article  Google Scholar 

  45. Vees H, Buchegger F, Albrecht S, Khan H, Husarik D, Zaidi H et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/ml) after radical prostatectomy. BJU Int 2007; 99: 1415–1420.

    Article  CAS  Google Scholar 

  46. Panebianco V, Sciarra A, Lisi D, Galati F, Buonocore V, Catalano C et al. Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol 2011 (in press).

  47. Casamassima F, Masi L, Menichelli C, Bonucci I, Casamassima E, Lazzeri M et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori 2011; 97: 49–55.

    Article  CAS  Google Scholar 

  48. McCarthy M, Siew T, Campbell A, Lenzo N, Spry N, Vivian J et al. (1)F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imag 2011; 38: 14–22.

    Article  Google Scholar 

  49. Pinkawa M, Attieh C, Piroth MD, Holy R, Nussen S, Klotz J et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer—evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol 2009; 93: 213–219.

    Article  CAS  Google Scholar 

  50. Pinkawa M, Holy R, Piroth MD, Klotz J, Nussen S, Krohn T et al. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 2010; 186: 600–606.

    Article  Google Scholar 

  51. Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O et al. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 2009; 93: 220–225.

    Article  CAS  Google Scholar 

  52. Weber DC, Wang H, Cozzi L, Dipasquale G, Khan HG, Ratib O et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 2009; 4: 34.

    Article  Google Scholar 

  53. Niyazi M, Bartenstein P, Belka C, Ganswindt U . Choline PET based dose-painting in prostate cancer—modelling of dose effects. Radiat Oncol 2010; 5: 23.

    Article  Google Scholar 

  54. Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB . 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007; 6: 23–30.

    Article  Google Scholar 

  55. Roef M, Vogel WV . The effects of muscle exercise and bed rest on [18F]methylcholine PET/CT. Eur J Nucl Med Mol Imag 2011; 38: 526–530.

    Article  Google Scholar 

  56. Schillaci O, Calabria F, Tavolozza M, Ciccio C, Carlani M, Caracciolo CR et al. 18F-choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer. Nucl Med Commun 2010; 31: 39–45.

    Article  CAS  Google Scholar 

  57. DeGrado TR, Kwee SA, Coel MN, Coleman RE . impact of urinary excretion of (18)F-labeled choline analogs. J Nucl Med 2007; 48: 1225.

    Article  Google Scholar 

  58. Kwee SA, DeGrado T . Prostate biopsy guided by 18F-fluorocholine PET in men with persistently elevated PSA levels. Eur J Nucl Med Mol Imag 2008; 35: 1567–1569; author reply 70.

    Article  Google Scholar 

  59. Viani GA, Stefano EJ, Afonso SL . Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 2009; 74: 1405–1418.

    Article  Google Scholar 

  60. Bott SR, Ahmed HU, Hindley RG, Abdul-Rahman A, Freeman A, Emberton M . The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. BJU Int 2010; 106: 1607–1611.

    Article  Google Scholar 

  61. Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH . Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 2011; 8: 48–55.

    Article  Google Scholar 

  62. Mouraviev V, Mayes JM, Polascik TJ . Basis of focal therapy for early-stage prostate cancer. Nat Rev Urol 2009; 6: 205–215.

    Article  Google Scholar 

  63. Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KW, Klein EA et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol 2007; 25: 2035–2041.

    Article  Google Scholar 

Download references

Acknowledgements

This work supported by the Canadian Institute for Health Research (Grant CTP 87515) and the Centre for Probe Development and Commercialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Bauman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauman, G., Belhocine, T., Kovacs, M. et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 15, 45–55 (2012). https://doi.org/10.1038/pcan.2011.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.35

Keywords

This article is cited by

Search

Quick links