Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies

Abstract

Colorectal cancer (CRC) is a worldwide health concern with respect to both incidence and mortality, and as a result, CRC tumorigenesis, progression and metastasis have been heavily studied, especially with respect to identifying genetic, epigenetic, transcriptomic and proteomic profiles of disease. DNA methylation alterations are hallmarks of CRC, and epigenetic driver genes have been identified that are thought to be involved in early stages of tumorigenesis. Moreover, distinct CRC patient subgroups are organized based on DNA methylation profiles. CRC tumors displaying CpG island methylator phenotypes (CIMPs), defined as DNA hypermethylation at specific CpG islands in subsets of tumors, show high concordance with specific genetic alterations, disease risk factors and patient outcome. This review details the DNA methylation alterations in CRC, the significance of CIMP status, the development of treatments based on specific molecular profiles and the application of epigenetic therapies for CRC patient treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

2-HG:

2-hydroxyglutarate

5-Aza-CR:

5-aza-cytidine

5-Aza-CdR:

5-aza-2’-deoxycytidine

5-FU:

5-fluorouracil

5caC:

5-carboxylcytosine

5fC:

5-formylcytosine

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

α-KG:

alpha-ketoglutarate

ADAM2:

ADAM metallopeptidase domain 2

ADAM23:

ADAM metallopeptidase domain 23

APC:

adenomatous polyposis coli

ARMCX1:

armadillo repeat containing, X-linked 1

ATM:

ataxia telangiectasia mutated

BACH1:

BTB domain and CNC homolog 1

BCHE:

butyrylcholinesterase

BRAF:

B-Raf proto-oncogene, serine/threonine kinase

BRAF-mut:

mutant BRAF

BTG4:

BTG anti-proliferation factor 4

C9ORF50:

chromosome 9 open reading frame 50

CALGB:

aancer and leukemia group B

CAPOX:

capecitabine and oxaliplatin

CDKN2A:

cyclin-dependent kinase inhibitor 2A

CDH1:

E-cadherin

CDO1:

cysteine dioxygenase type 1

CEA:

carcino-embryonic antigen

cfDNA:

cell-free DNA

CHD8:

chromodomain-helicase-DNA-binding protein 8

CIN:

chromosomal instability

CRC:

colorectal cancer

CIMP:

CpG island methylator phenotype

CIMP-H:

CIMP-high

CIMP-L:

CIMP-low

CMS:

Consensus molecular subgroup

CRCSC:

CRC subtyping condortium

ctDNA:

circulating tumor DNA

DCC:

deleted in colorectal cancer

DKO:

DNMT1/DNMT3B double knockout

DNMT:

DNA Methyltransferase

DNMT1:

DNA methyltransferase 1

DNMT3A:

DNA methyltransferase 3A

DNMT3B:

DNA methyltransferase 3B

DPYD:

dihydropyrimidine dehydrogenase

EGFR:

epidermal growth factor receptor

ES:

embryonic stem

ESX1:

ESX homeobox 1

EPCAM:

epithelial cell adhesion molecule

FOLFIRI:

5-FU, folinic acid and irinotecan

FOLFOX:

folinic acid, 5-FU and oxaliplatin

FOXD2:

forkhead box D2

GGH:

gamma-glutamyl hydrolase

H3K36me3:

histone H3 lysine 36 trimethylation

HER2:

ERBB2 (erb-b2 receptor tyrosine kinase 2)

HINT1:

histidine triad nucleotide-binding protein 1

HNPCC:

hereditary non-polyposis colorectal cancer

HPP:

hyperplastic polyp

IDH1:

isocitrate dehydrogenase 1

IME:

intermediate methylation epigenotype

IRAK3:

interleukin receptor associated kinase 3

KAP1:

KRAB-associated protein 1

KRAS:

V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

KRAS-mut:

mutant KRAS

MAFG:

MAF BZIP transcription factor G

MEK1:

mitogen-activated protein kinase 1

MEK2:

mitogen-activated protein kinase 2

MGMT:

O-6-methylguanine-DNA methyltransferase

miRNA:

microRNA

MMP9:

matrix metallopeptidase 9

MSH2:

MutS homolog 2

MSI:

microsatellite instability

MSI-H:

MSI-high

MSI-L:

MSI-low

MLH1:

Mut-L homolog 1

MSH6:

MutS homolog 6

MSS:

microsatellite stable

MYC:

MYC proto-oncogene, bHLH transcription factor

OS:

overall survival

P2RY14:

purigenic receptor P2Y14

PFS:

progression-free survival

PIK3CA:

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

PMS1:

post-meiotic separation increased 1

RASSF1:

RAS association domain family member 1

RB:

retinoblastoma

RECK:

reversion inducing cysteine-rich protein with kazal motifs

RFS:

relapse-free survival

RUNX3:

Runt-related transcription factor 3

SAHA:

suberoylanilide hydroxamic acid

SAM:

S-adenosylmethionine

SCNA:

somatic copy number alteration

SEPT9:

septin 9

SETDB1:

SET domain bifurcated 1

SFRP:

secreted frizzled-related protein 1

SGI-110:

Guadecitabine

SMAD2:

SMAD family member 2

SMAD4:

SMAD family member 4

SSA:

sessile serrated sdenoma

SWOG:

southwest oncology group

SYCP3:

synaptonemal complex protein 3

TAC1:

techykinin precursor 1

TCGA:

The cancer genome atlas

TET:

Ten eleven translocase

TGF-β:

transforming growth factor beta

THBS1:

thrombospondin 1

TMEFF2:

transmembrane protein with EGF-like and two follistatin-like domains 2

TP53:

Tumor protein 53

TPEF:

transmembrane protein with EGF-like and two follistatin-like domains 2

TSA:

traditional serrated adenoma

VEGFR:

vascular endothelial growth factor receptors

VIM:

vimentin

WNT:

wingless-related integration site

ZNF304:

zinc finger protein 304.

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.

    Article  PubMed  Google Scholar 

  2. Heinemann V, Stintzing S . FOLFIRI with cetuximab or bevacizumab: FIRE-3-authors' reply. Lancet Oncol 2014; 15: e583–584.

    PubMed  Google Scholar 

  3. Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014; 371: 1609–1618.

    PubMed  Google Scholar 

  4. Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP . Milestones of Lynch syndrome: 1895-2015. Nat Rev Cancer 2015; 15: 181–194.

    CAS  PubMed  Google Scholar 

  5. Fearon ER, Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    CAS  PubMed  Google Scholar 

  6. Zarate R, Boni V, Bandres E, Garcia-Foncillas J . MiRNAs and LincRNAs: could they be considered as biomarkers in colorectal cancer? Int J Mol Sci 2012; 13: 840–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J et al. A Big Bang model of human colorectal tumor growth. Nat Genet 2015; 47: 209–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Google Scholar 

  9. Bettington M, Walker N, Clouston A, Brown I, Leggett B, Whitehall V . The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathol 2013; 62: 367–386.

    Google Scholar 

  10. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R . Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 2000; 97: 5237–5242.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484–492.

    CAS  PubMed  Google Scholar 

  12. Robertson KD, Jones PA . DNA methylation: past, present and future directions. Carcinogenesis 2000; 21: 461–467.

    CAS  PubMed  Google Scholar 

  13. Jones PA, Liang G . Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10: 805–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Egger G, Jeong S, Escobar SG, Cortez CC, Li TW, Saito Y et al. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc Natl Acad Sci USA 2006; 103: 14080–14085.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000; 404: 1003–1007.

    CAS  PubMed  Google Scholar 

  16. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416: 552–556.

    CAS  PubMed  Google Scholar 

  17. Duymich CE, Charlet J, Yang X, Jones PA, Liang G . DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 2016; 7: 11453.

    PubMed  PubMed Central  Google Scholar 

  18. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G . Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014; 26: 577–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ehrlich M, Wang RY . 5-Methylcytosine in eukaryotic DNA. Science 1981; 212: 1350–1357.

    CAS  PubMed  Google Scholar 

  20. Feinberg AP, Vogelstein B . Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89–92.

    CAS  PubMed  Google Scholar 

  21. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983; 11: 6883–6894.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinstein IB . Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 2000; 21: 857–864.

    CAS  PubMed  Google Scholar 

  23. Sharma SV, Settleman J . Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 2007; 21: 3214–3231.

    CAS  PubMed  Google Scholar 

  24. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 2012; 21: 655–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36: 417–422.

    CAS  PubMed  Google Scholar 

  26. Adams BD, Kasinski AL, Slack FJ . Aberrant regulation and function of microRNAs in cancer. Curr Biol 2014; 24: R762–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kita Y, Vincent K, Natsugoe S, Berindan-Neagoe I, Calin GA . Epigenetically regulated microRNAs and their prospect in cancer diagnosis. Exp Rev Mol Diagn 2014; 14: 673–683.

    CAS  Google Scholar 

  28. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435–443.

    CAS  PubMed  Google Scholar 

  29. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    CAS  PubMed  Google Scholar 

  30. Giacinti C, Giordano A . RB and cell cycle progression. Oncogene 2006; 25: 5220–5227.

    CAS  PubMed  Google Scholar 

  31. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008; 68: 4123–4132.

    CAS  PubMed  Google Scholar 

  32. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 2010; 70: 6609–6618.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 2011; 32: 1033–1042.

    CAS  PubMed  Google Scholar 

  34. Kaur S, Lotsari-Salomaa JE, Seppanen-Kaijansinkko R, Peltomaki P . MicroRNA methylation in colorectal ancer. Adv Exp Med Biol 2016; 937: 109–122.

    CAS  PubMed  Google Scholar 

  35. Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M et al. Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis 2013; 2: e56.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan H, Choi AJ, Lee BH, Ting AH . Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PloS ONE 2011; 6: e20628.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Toth K, Bartak BK, Tulassay Z, Molnar B . Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis. Exp Rev Mol Diagn 2016; 16: 239–252.

    CAS  Google Scholar 

  38. Bosch LJ, Carvalho B, Fijneman RJ, Jimenez CR, Pinedo HM, van Engeland M et al. Molecular tests for colorectal cancer screening. Clin Colorectal Cancer 2011; 10: 8–23.

    CAS  PubMed  Google Scholar 

  39. Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 2005; 97: 1124–1132.

    CAS  PubMed  Google Scholar 

  40. Kisiel JB, Yab TC, Taylor WR, Chari ST, Petersen GM, Mahoney DW et al. Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates. Cancer 2012; 118: 2623–2631.

    CAS  PubMed  Google Scholar 

  41. Lenhard K, Bommer GT, Asutay S, Schauer R, Brabletz T, Goke B et al. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin Gastroenterol Hepatol 2005; 3: 142–149.

    CAS  PubMed  Google Scholar 

  42. Mansour H . Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection. Front Genet 2014; 5: 182.

    PubMed  PubMed Central  Google Scholar 

  43. Oberwalder M, Zitt M, Wontner C, Fiegl H, Goebel G, Zitt M et al. SFRP2 methylation in fecal DNA—a marker for colorectal polyps. Int J Colorectal Dis 2008; 23: 15–19.

    PubMed  Google Scholar 

  44. Petko Z, Ghiassi M, Shuber A, Gorham J, Smalley W, Washington MK et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res 2005; 11: 1203–1209.

    CAS  PubMed  Google Scholar 

  45. Altobelli E, Angeletti PM, Latella G . Role of urinary biomarkers in the diagnosis of adenoma and colorectal cancer: a systematic review and meta-analysis. J Cancer 2016; 7: 1984–2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Herbst A, Wallner M, Rahmig K, Stieber P, Crispin A, Lamerz R et al. Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. Eur J Gastroenterol Hepatol 2009; 21: 565–569.

    CAS  PubMed  Google Scholar 

  47. Kou CH, Zhou T, Han XL, Zhuang HJ, Qian HX . Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2016; 12: 4838–4844.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lecomte T, Berger A, Zinzindohoue F, Micard S, Landi B, Blons H et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 2002; 100: 542–548.

    CAS  PubMed  Google Scholar 

  49. Nakayama H, Hibi K, Takase T, Yamazaki T, Kasai Y, Ito K et al. Molecular detection of p16 promoter methylation in the serum of recurrent colorectal cancer patients. Int J Cancer 2003; 105: 491–493.

    CAS  PubMed  Google Scholar 

  50. Nilsson TK, Lof-Ohlin ZM, Sun XF . DNA methylation of the p14ARF, RASSF1A and APC1A genes as an independent prognostic factor in colorectal cancer patients. Int J Oncol 2013; 42: 127–133.

    CAS  PubMed  Google Scholar 

  51. Weisenberger DJ, Levine AJ, Long TI, Buchanan DD, Walters R, Clendenning M et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomark Prev 2015; 24: 512–519.

    CAS  Google Scholar 

  52. Lange CP, Campan M, Hinoue T, Schmitz RF, van der Meulen-de Jong AE, Slingerland H et al. Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PloS ONE 2012; 7: e50266.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 2009; 55: 1337–1346.

    CAS  PubMed  Google Scholar 

  54. Payne SR . From discovery to the clinic: the novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics 2010; 2: 575–585.

    CAS  PubMed  Google Scholar 

  55. Tham C, Chew M, Soong R, Lim J, Ang M, Tang C et al. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer 2014; 120: 3131–3141.

    CAS  PubMed  Google Scholar 

  56. Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 2007; 3: 1709–1723.

    CAS  PubMed  Google Scholar 

  57. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP . CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96: 8681–8686.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 787–793.

    CAS  PubMed  Google Scholar 

  59. Limsui D, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst 2010; 102: 1012–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Samowitz WS, Albertsen H, Sweeney C, Herrick J, Caan BJ, Anderson KE et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst 2006; 98: 1731–1738.

    CAS  PubMed  Google Scholar 

  61. Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS . CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn 2006; 8: 582–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012; 22: 271–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 2007; 104: 18654–18659.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 2010; 16: 21–33.

    CAS  PubMed  Google Scholar 

  65. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21: 1350–1356.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lievre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008; 26: 374–379.

    CAS  PubMed  Google Scholar 

  67. Bokemeyer C, Kohne CH, Ciardiello F, Lenz HJ, Heinemann V, Klinkhardt U et al. FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer. Eur J Cancer 2015; 51: 1243–1252.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Cutsem E, Lenz HJ, Kohne CH, Heinemann V, Tejpar S, Melezinek I et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015; 33: 692–700.

    CAS  PubMed  Google Scholar 

  69. Scartozzi M, Bearzi I, Mandolesi A, Giampieri R, Faloppi L, Galizia E et al. Epidermal growth factor receptor (EGFR) gene promoter methylation and cetuximab treatment in colorectal cancer patients. Br J Cancer 2011; 104: 1786–1790.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Demurtas L, Puzzoni M, Giampieri R, Ziranu P, Pusceddu V, Mandolesi A et al. The role of primary tumour sidedness, EGFR gene copy number and EGFR promoter methylation in RAS/BRAF wild-type colorectal cancer patients receiving irinotecan/cetuximab. Br J Cancer 2017; 117: 315–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Geissler AL, Geissler M, Kottmann D, Lutz L, Fichter CD, Fritsch R et al. ATM mutations and E-cadherin expression define sensitivity to EGFR-targeted therapy in colorectal cancer. Oncotarget 2017; 8: 17164–17190.

    PubMed  PubMed Central  Google Scholar 

  72. Missiaglia E, Jacobs B, D'Ario G, Di Narzo AF, Soneson C, Budinska E et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol 2014; 25: 1995–2001.

    CAS  PubMed  Google Scholar 

  73. Powell AE, Vlacich G, Zhao ZY, McKinley ET, Washington MK, Manning HC et al. Inducible loss of one Apc allele in Lrig1-expressing progenitor cells results in multiple distal colonic tumors with features of familial adenomatous polyposis. Am J Physiol Gastrointest Liver Physiol 2014; 307: G16–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y, Poulin EJ, Coffey RJ . LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. Br J Cancer 2013; 108: 1765–1770.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Venook AP, Niedzwiecki D, Lenz H-J, Innocenti F, Mahoney MR, O'Neil BH et al. CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol 2014; 32: 5s (suppl; abstr LBA3).

    Google Scholar 

  76. Venook AP, Niedzwiecki D, Innocenti F, Fruth B, Greene C, O'Neil BH et al. Impact of primary (1º) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 2016; 34: (suppl; abstr 3504).

    Google Scholar 

  77. Tejpar S, Stintzing S, Ciardiello F, Tabernero J, Van Cutsem E, Beier F et al. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer: retrospective analyses of the crystal and fire-3 trials. JAMA Oncol 2016, epub ahead of print 10 October 2016 doi:10.1001/jamaoncol.2016.3797.

    PubMed  PubMed Central  Google Scholar 

  78. Loupakis F, Yang D, Yau L, Feng S, Cremolini C, Zhang W et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst 2015; 107: pii: dju427.

    Google Scholar 

  79. Juo YY, Johnston FM, Zhang DY, Juo HH, Wang H, Pappou EP et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol 2014; 25: 2314–2327.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohen SA, Wu C, Yu M, Gourgioti G, Wirtz R, Raptou G et al. Evaluation of CpG island methylator phenotype as a biomarker in colorectal cancer treated with adjuvant oxaliplatin. Clin Colorectal Cancer 2016; 15: 164–169.

    PubMed  Google Scholar 

  81. Van Rijnsoever M, Elsaleh H, Joseph D, McCaul K, Iacopetta B . CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin Cancer Res 2003; 9: 2898–2903.

    CAS  PubMed  Google Scholar 

  82. Ahn JB, Chung WB, Maeda O, Shin SJ, Kim HS, Chung HC et al. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer 2011; 117: 1847–1854.

    CAS  PubMed  Google Scholar 

  83. Gallois C, Laurent-Puig P, Taieb J . Methylator phenotype in colorectal cancer: a prognostic factor or not? Crit Rev Oncol Hematol 2016; 99: 74–80.

    CAS  PubMed  Google Scholar 

  84. Iacopetta B, Kawakami K, Watanabe T . Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? Int J Clin Oncol 2008; 13: 498–503.

    CAS  PubMed  Google Scholar 

  85. Kim SE, Hinoue T, Kim MS, Sohn KJ, Cho RC, Cole PD et al. gamma-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. Genes Nutr 2015; 10: 444.

    PubMed  Google Scholar 

  86. Shiovitz S, Bertagnolli MM, Renfro LA, Nam E, Foster NR, Dzieciatkowski S et al. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer. Gastroenterol 2014; 147: 637–645.

    CAS  Google Scholar 

  87. Donada M, Bonin S, Barbazza R, Pettirosso D, Stanta G . Management of stage II colon cancer - the use of molecular biomarkers for adjuvant therapy decision. BMC Gastroenterol 2013; 13: 36.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Min BH, Bae JM, Lee EJ, Yu HS, Kim YH, Chang DK et al. The CpG island methylator phenotype may confer a survival benefit in patients with stage II or III colorectal carcinomas receiving fluoropyrimidine-based adjuvant chemotherapy. BMC Cancer 2011; 11: 344.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kaneko M, Kotake M, Bando H, Yamada T, Takemura H, Minamoto T . Prognostic and predictive significance of long interspersed nucleotide element-1 methylation in advanced-stage colorectal cancer. BMC Cancer 2016; 16: 945.

    PubMed  PubMed Central  Google Scholar 

  90. Pfutze K, Benner A, Hoffmeister M, Jansen L, Yang R, Blaker H et al. Methylation status at HYAL2 predicts overall and progression-free survival of colon cancer patients under 5-FU chemotherapy. Genomics 2015; 106: 348–354.

    PubMed  Google Scholar 

  91. Fang M, Ou J, Hutchinson L, Green MR . The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol Cell 2014; 55: 904–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Serra RW, Fang M, Park SM, Hutchinson L, Green MR . A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. eLife 2014; 3: e02313.

    PubMed  PubMed Central  Google Scholar 

  93. Raynal NJ-M, Issa JP. DNA methyltransferase inhibitors. In: Egger G, Arimondo P (eds.)Drug Discovery in Cancer Epigenetics. Academic Press: Waltham, MA, USA, 2016, pp 169–190.

    Google Scholar 

  94. Christman JK . 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21: 5483–5495.

    CAS  PubMed  Google Scholar 

  95. Santi DV, Norment A, Garrett CE . Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 1984; 81: 6993–6997.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ et al. S110, a 5-Aza-2'-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 2010; 9: 1443–1450.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C et al. Delivery of 5-aza-2'-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 2007; 67: 6400–6408.

    CAS  PubMed  Google Scholar 

  98. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 2016; 164: 1073.

    CAS  PubMed  Google Scholar 

  99. Kasinathan S, Henikoff S . 5-Aza-CdR delivers a gene body blow. Cancer Cell 2014; 26: 449–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu M, Ohtani H, Zhou W, Orskov AD, Charlet J, Zhang YW et al. Vitamin C increases viral mimicry induced by 5-aza-2'-deoxycytidine. Proc Natl Acad Sci USA 2016; 113: 10238–10244.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 2015; 162: 961–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW, Vatapalli R et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 2014; 5: 587–598.

    PubMed  PubMed Central  Google Scholar 

  103. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013; 500: 222–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324: 930–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012; 336: 934–937.

    CAS  PubMed  Google Scholar 

  106. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333: 1300–1303.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cohen AL, Holmen SL, Colman H . IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 2013; 13: 345.

    PubMed  PubMed Central  Google Scholar 

  108. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2010; 465: 966.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu X, Zhang Y . TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 2017.

  111. Mayland CR, Bennett MI, Allan K . Vitamin C deficiency in cancer patients. Palliat Med 2005; 19: 17–20.

    PubMed  Google Scholar 

  112. Ikehata M, Ogawa M, Yamada Y, Tanaka S, Ueda K, Iwakawa S . Different effects of epigenetic modifiers on the cytotoxicity induced by 5-fluorouracil, irinotecan or oxaliplatin in colon cancer cells. Biol Pharm Bull 2014; 37: 67–73.

    CAS  PubMed  Google Scholar 

  113. Flis S, Gnyszka A, Flis K . DNA methyltransferase inhibitors improve the effect of chemotherapeutic agents in SW48 and HT-29 colorectal cancer cells. PloS ONE 2014; 9: e92305.

    PubMed  PubMed Central  Google Scholar 

  114. Azad NS, El-Khoueiry A, Yin J, Oberg AL, Flynn P, Adkins D et al. Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat; a phase 2 consortium/stand Up 2 cancer study. Oncotarget 2017; 8: 35326–35338.

    PubMed  PubMed Central  Google Scholar 

  115. Overman MJ, Morris V, Moinova H, Manyam G, Ensor J, Lee MS et al. Phase I/II study of azacitidine and capecitabine/oxaliplatin (CAPOX) in refractory CIMP-high metastatic colorectal cancer: evaluation of circulating methylated vimentin. Oncotarget 2016; 7: 67495–67506.

    PubMed  PubMed Central  Google Scholar 

  116. Garrido-Laguna I, McGregor KA, Wade M, Weis J, Gilcrease W, Burr L et al. A phase I/II study of decitabine in combination with panitumumab in patients with wild-type (wt) KRAS metastatic colorectal cancer. Invest New Drugs 2013; 31: 1257–1264.

    CAS  PubMed  Google Scholar 

  117. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012; 30: 413–421.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vicky Joseph Cancer Research Lab (to GL), NIH 5R21 CA201865 (to GL and DJW) and NIH/NCI P30 CA014089 (to DJW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D J Weisenberger, G Liang or H-J Lenz.

Ethics declarations

Competing interests

DJW is a consultant for Zymo Research Corporation. Zymo did not contribute to this report, nor has an interest in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisenberger, D., Liang, G. & Lenz, HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 37, 566–577 (2018). https://doi.org/10.1038/onc.2017.374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.374

This article is cited by

Search

Quick links