Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model

Abstract

The interaction between cancer cells and their microenvironment is an important determinant of the pathological nature of cancers, particularly their tumorigenic abilities. The KEAP1-NRF2 system, originally identified as a critical defense mechanism against oxidative stress, is often dysregulated in various human cancers forming solid tumors, resulting in the aberrant activation of NRF2. Increased accumulation of NRF2 in cancers is strongly associated with the poor prognoses of cancer patients, including those with lung and breast cancers. Multiple lines of evidence suggest that aberrantly activated NRF2 in cancer cells drives their malignant progression and that the cancer cells consequently develop ‘NRF2 addiction.’ Although the downstream effectors of NRF2 that are responsible for cancer malignancy have been extensively studied, mechanisms of how NRF2 activation contributes to the aggressive tumorigenesis remains to be elucidated. In this study, we found a significant correlation between NRF2 and IL-11 status in breast cancer patients. Based on a recent report demonstrating that IL-11 is induced downstream of NRF2, we examined the significance of IL-11 in NRF2-driven tumorigenesis with a newly established NRF2 addiction cancer model. Expression of Il11 was elevated during the tumorigenesis of the NRF2 addiction cancer model, but intriguingly, it was hardly detected when the cancer model cells were cultured in vitro. These results imply that a signal originating from the microenvironment cooperates with NRF2 to activate Il11. To the best of our knowledge, this is the first report showing the influence of the microenvironment on the NRF2 pathway in cancer cells and the contribution of NRF2 to the secretory phenotypes of cancers. Disruption of Il11 in the NRF2 addiction cancer model remarkably inhibited the tumorigenesis, suggesting an essential role of IL-11 in NRF2-driven tumorigenesis. Thus, this study suggests that IL-11 is a potential therapeutic target for NRF2-addicted breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  3. Whiteside TL . The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27: 5904–5912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235–271.

    Article  CAS  PubMed  Google Scholar 

  5. Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, Acton SE et al. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 2015; 162: 1257–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uruno A, Motohashi H . The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide 2011; 25: 153–160.

    Article  CAS  PubMed  Google Scholar 

  7. Mitsuishi Y, Motohashi H, Yamamoto M . The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2012; 2: 200.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki T, Motohashi H, Yamamoto M . Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 2013; 34: 340–346.

    Article  CAS  PubMed  Google Scholar 

  9. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012; 22: 66–79.

    Article  CAS  PubMed  Google Scholar 

  10. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A . SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 2011; 31: 1121–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD . Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013; 32: 3765–3781.

    Article  CAS  PubMed  Google Scholar 

  12. Shirasaki K, Taguchi K, Unno M, Motohashi H, Yamamoto M . NF-E2-related factor 2 promotes compensatory liver hypertrophy after portal vein branch ligation in mice. Hepatology 2014; 59: 2371–2382.

    Article  CAS  PubMed  Google Scholar 

  13. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    Article  Google Scholar 

  14. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543–550.

    Article  Google Scholar 

  15. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013; 45: 1113–1120.

    Article  Google Scholar 

  16. Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.

    Article  Google Scholar 

  17. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517: 576–582.

    Article  Google Scholar 

  19. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA 2008; 105: 13568–13573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Onodera Y, Motohashi H, Takagi K, Miki Y, Shibahara Y, Watanabe M et al. NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocr Relat Cancer 2014; 21: 241–252.

    Article  CAS  PubMed  Google Scholar 

  21. Kanamori M, Higa T, Sonoda Y, Murakami S, Dodo M, Kitamura H et al. Activation of the NRF2 pathway and its impact on the prognosis of anaplastic glioma patients. Neuro Oncol 2015; 17: 555–565.

    Article  CAS  PubMed  Google Scholar 

  22. Inoue D, Suzuki T, Mitsuishi Y, Miki Y, Suzuki S, Sugawara S et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci 2012; 103: 760–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008; 29: 1235–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S . Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal 2010; 13: 1627–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh A, Happel C, Manna SK, Acquaah-Mensah G, Carrerero J, Kumar S et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest 2013; 123: 2921–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 2015; 47: 1475–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F et al. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med 2017; 103: 236–247.

    Article  CAS  PubMed  Google Scholar 

  28. Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 2009; 15: 3423–3432.

    Article  CAS  PubMed  Google Scholar 

  29. Grivennikov SI . IL-11: a prominent pro-tumorigenic member of the IL-6 family. Cancer Cell 2013; 24: 145–147.

    Article  CAS  PubMed  Google Scholar 

  30. Ernst M, Putoczki TL . Molecular pathways: IL11 as a tumor-promoting cytokine-translational implications for cancers. Clin Cancer Res 2014; 20: 5579–5588.

    Article  CAS  PubMed  Google Scholar 

  31. Nakayama T, Yoshizaki A, Izumida S, Suehiro T, Miura S, Uemura T et al. Expression of interleukin-11 (IL-11) and IL-11 receptor alpha in human gastric carcinoma and IL-11 upregulates the invasive activity of human gastric carcinoma cells. Int J Oncol 2007; 30: 825–833.

    CAS  PubMed  Google Scholar 

  32. Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013; 24: 257–271.

    Article  CAS  PubMed  Google Scholar 

  33. Johnstone CN, Chand A, Putoczki TL, Ernst M . Emerging roles for IL-11 signaling in cancer development and progression: Focus on breast cancer. Cytokine Growth Factor Rev 2015; 26: 489–498.

    Article  CAS  PubMed  Google Scholar 

  34. Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG . Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann Surg Oncol 2006; 13: 802–808.

    Article  PubMed  Google Scholar 

  35. Bockhorn J, Dalton R, Nwachukwu C, Huang S, Prat A, Yee K et al. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun 2013; 4: 1393.

    Article  PubMed  Google Scholar 

  36. Bockhorn J, Yee K, Chang YF, Prat A, Huo D, Nwachukwu C et al. MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Res Treat 2013; 137: 373–382.

    Article  CAS  PubMed  Google Scholar 

  37. Nishina T, Deguchi Y, Miura R, Yamazaki S, Shinkai Y, Kojima Y et al. Critical contribution of nuclear factor erythroid 2-related factor 2 (NRF2) to electrophile-induced Interleukin-11 production. J Biol Chem 2017; 292: 205–216.

    Article  CAS  PubMed  Google Scholar 

  38. Shin SY, Choi C, Lee HG, Lim Y, Lee YH . Transcriptional regulation of the interleukin-11 gene by oncogenic Ras. Carcinogenesis 2012; 33: 2467–2476.

    Article  CAS  PubMed  Google Scholar 

  39. Nishina T, Komazawa-Sakon S, Yanaka S, Piao X, Zheng DM, Piao JH et al. Interleukin-11 links oxidative stress and compensatory proliferation. Sci Signal 2012; 5: ra5.

    Article  PubMed  Google Scholar 

  40. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  41. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 2003; 35: 238–245.

    Article  CAS  PubMed  Google Scholar 

  43. Okawa H, Motohashi H, Kobayashi A, Aburatani H, Kensler TW, Yamamoto M . Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem Biophys Res Commun 2006; 339: 79–88.

    Article  CAS  PubMed  Google Scholar 

  44. Taguchi K, Maher JM, Suzuki T, Kawatani Y, Motohashi H, Yamamoto M . Genetic analysis of cytoprotective functions supported by graded expression of Keap1. Mol Cell Biol 2010; 30: 3016–3026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Satoh H, Moriguchi T, Saigusa D, Baird L, Yu L, Rokutan H et al. NRF2 Intensifies Host Defense Systems to Prevent Lung Carcinogenesis, but After Tumor Initiation Accelerates Malignant Cell Growth. Cancer Res 2016; 76: 3088–3096.

    Article  CAS  PubMed  Google Scholar 

  46. Ohkoshi A, Suzuki T, Ono M, Kobayashi T, Yamamoto M . Roles of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis. Cancer Prev Res (Phila) 2013; 6: 149–159.

    Article  CAS  Google Scholar 

  47. Solimini NL, Luo J, Elledge SJ . Non-oncogene addiction and the stress phenotypes of cancer cells. Cell 2007; 130: 986–988.

    Article  CAS  PubMed  Google Scholar 

  48. Saito T, Ichimura Y, Taguchi K, Suzuki T, Mizushima T, Takagi K et al. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun 2016; 7: 12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chem Biol 2016; 11: 3214–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O'Connor T et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 2001; 59: 169–177.

    Article  CAS  PubMed  Google Scholar 

  51. Satoh H, Moriguchi T, Taguchi K, Takai J, Maher JM, Suzuki T et al. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 2010; 31: 1833–1843.

    Article  CAS  PubMed  Google Scholar 

  52. Goto M, Kitamura H, Alam MM, Ota N, Haseba T, Akimoto T et al. Alcohol dehydrogenase 3 contributes to the protection of liver from nonalcoholic steatohepatitis. Genes Cells 2015; 20: 464–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Keiko Nakayama for providing a mutant HRAS-expression vector, pMX-puro-HRASG12V, Drs. Norio Suzuki and Masayuki Yamamoto for providing SV40 T antigen expressing vectors, HA-KEAP1 cDNA and intensive discussion, and Drs Tomohiro Nakamura and Atsushi Hozawa for checking the quality of quantitative data and the adequacy of their presentation. We also thank Ms Nao Ohta for technical assistance and the Biomedical Research Core of Tohoku University Graduate School of Medicine for technical support. This work was supported by JSPS KAKENHI Grant Numbers JP26860180 (HK), 15H04692 (HM) and 16K15228 (HM), Daiichi Sankyo Foundation of Life Science (HM), the Uehara Memorial Foundation (HM), the Mitsubishi Foundation (HM), the Naito Foundation (HM), and the Princess Takamatsu Cancer Research Fund 15-24728 (HM). The funders had no role in the design of the study, data collection and analysis, decision to publish or preparation of the manuscript.

Author contributions

HK designed the research, conducted the experiments using cell lines and mice, and wrote early drafts of the manuscript. YO and TS conducted analysis of the human breast cancer cases. SM helped with the in vivo tumorigenesis experiments. HM designed the research, analyzed the data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Motohashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, H., Onodera, Y., Murakami, S. et al. IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Oncogene 36, 6315–6324 (2017). https://doi.org/10.1038/onc.2017.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.236

This article is cited by

Search

Quick links