Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1

Abstract

The APC/C-Cdh1 ubiquitin-ligase complex targets cell cycle regulators for proteosomal degradation and helps prevent tumor development and accumulation of chromosomal aberrations. Replication stress has been proposed to be the main driver of genomic instability in the absence of Cdh1, but the real contribution of APC/C-Cdh1 to efficient replication, especially in normal cells, remains unclear. Here we show that, in primary MEFs, acute depletion or permanent ablation of Cdh1 slowed down replication fork movement and increased origin activity. Partial inhibition of origin firing does not accelerate replication forks, suggesting that fork progression is intrinsically limited in the absence of Cdh1. Moreover, exogenous supply of nucleotide precursors, or ectopic overexpression of RRM2, the regulatory subunit of Ribonucleotide Reductase, restore replication efficiency, indicating that dNTP availability could be impaired upon Cdh1 loss. Indeed, we found reduced dNTP levels in Cdh1-deficient MEFs. Importantly, DNA breakage is also significantly alleviated by increasing intracellular dNTP pools, strongly suggesting that genomic instability is the result of aberrant replication. These observations highlight the relevance of APC/C-Cdh1 activity during G1 to ensure an adequate supply of dNTPs to the replisome, prevent replication stress and the resulting chromosomal breaks and, ultimately, suppress tumorigenesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Teixeira LK, Reed SI . Ubiquitin ligases and cell cycle control. Annu Rev Biochem 2013; 82: 387–414.

    Article  CAS  Google Scholar 

  2. Craney A, Rape M . Dynamic regulation of ubiquitin-dependent cell cycle control. Curr Opin Cell Biol 2013; 25: 704–710.

    Article  CAS  Google Scholar 

  3. Sivakumar S, Gorbsky GJ . Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16: 82–94.

    Article  CAS  Google Scholar 

  4. Chang L, Barford D . Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr Opin Struct Biol 2014; 29: 1–9.

    Article  CAS  Google Scholar 

  5. Pines J . Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 2011; 12: 427–438.

    Article  CAS  Google Scholar 

  6. Sivaprasad U, Machida YJ, Dutta A . APC/C—the master controller of origin licensing? Cell Div 2007; 2: 8.

    Article  Google Scholar 

  7. Eguren M, Manchado E, Malumbres M . Non-mitotic functions of the Anaphase-Promoting Complex. Semin Cell Dev Biol 2011; 22: 572–578.

    Article  CAS  Google Scholar 

  8. Sigrist SJ, Lehner CF . Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 1997; 90: 671–681.

    Article  CAS  Google Scholar 

  9. Kitamura K, Maekawa H, Shimoda C . Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol Biol Cell 1998; 9: 1065–1080.

    Article  CAS  Google Scholar 

  10. Fay DS, Keenan S, Han M . fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev 2002; 16: 503–517.

    Article  CAS  Google Scholar 

  11. Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008; 10: 802–811.

    Article  Google Scholar 

  12. Engelbert D, Schnerch D, Baumgarten A, Wasch R . The ubiquitin ligase APC(Cdh1) is required to maintain genome integrity in primary human cells. Oncogene 2008; 27: 907–917.

    Article  CAS  Google Scholar 

  13. Sigl R, Wandke C, Rauch V, Kirk J, Hunt T, Geley S . Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J Cell Sci 2009; 122: 4208–4217.

    Article  CAS  Google Scholar 

  14. Wasch R, Robbins JA, Cross FR . The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 2010; 29: 1–10.

    Article  CAS  Google Scholar 

  15. Zhang J, Wan L, Dai X, Sun Y, Wei W . Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta 2014; 1845: 277–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Munoz S, Mendez J . DNA replication stress: from molecular mechanisms to human disease. Chromosoma 2016; 126: 1–15.

    Article  Google Scholar 

  17. Gelot C, Magdalou I, Lopez BS . Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel) 2015; 6: 267–298.

    Article  CAS  Google Scholar 

  18. Labib K, De Piccoli G . Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos Trans R Soc Lond B Biol Sci 2011; 366: 3554–3561.

    Article  CAS  Google Scholar 

  19. Ruzankina Y, Asare A, Brown EJ . Replicative stress, stem cells and aging. Mech Ageing Dev 2008; 129: 460–466.

    Article  CAS  Google Scholar 

  20. Lopez-Contreras AJ, Fernandez-Capetillo O . The ATR barrier to replication-born DNA damage. DNA Repair (Amst) 2010; 9: 1249–1255.

    Article  CAS  Google Scholar 

  21. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 2006; 173: 673–683.

    Article  CAS  Google Scholar 

  22. Ge XQ, Jackson DA, Blow JJ . Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 2007; 21: 3331–3341.

    Article  CAS  Google Scholar 

  23. Ibarra A, Schwob E, Mendez J . Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 2008; 105: 8956–8961.

    Article  CAS  Google Scholar 

  24. Zhong Y, Nellimoottil T, Peace JM, Knott SR, Villwock SK, Yee JM et al. The level of origin firing inversely affects the rate of replication fork progression. J Cell Biol 2013; 201: 373–383.

    Article  CAS  Google Scholar 

  25. Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 2008; 4: 357–365.

    Article  CAS  Google Scholar 

  26. Poli J, Tsaponina O, Crabbe L, Keszthelyi A, Pantesco V, Chabes A et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J 2012; 31: 883–894.

    Article  CAS  Google Scholar 

  27. Anglana M, Apiou F, Bensimon A, Debatisse M . Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 2003; 114: 385–394.

    Article  CAS  Google Scholar 

  28. Guarino E, Salguero I, Kearsey SE . Cellular regulation of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol 2014; 30: 97–103.

    Article  CAS  Google Scholar 

  29. Hofer A, Crona M, Logan DT, Sjoberg BM . DNA building blocks: keeping control of manufacture. Crit Rev Biochem Mol Biol 2012; 47: 50–63.

    Article  CAS  Google Scholar 

  30. Chabes AL, Pfleger CM, Kirschner MW, Thelander L . Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci U S A 2003; 100: 3925–3929.

    Article  CAS  Google Scholar 

  31. Ke PY, Kuo YY, Hu CM, Chang ZF . Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 2005; 19: 1920–1933.

    Article  CAS  Google Scholar 

  32. Yuan X, Srividhya J, De Luca T, Lee JH, Pomerening JR . Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset. Mol Biol Cell 2014; 25: 441–456.

    Article  Google Scholar 

  33. Eguren M, Porlan E, Manchado E, Garcia-Higuera I, Canamero M, Farinas I et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat Commun 2013; 4: 2880.

    Article  Google Scholar 

  34. Greil C, Krohs J, Schnerch D, Follo M, Felthaus J, Engelhardt M et al. The role of APC/C(Cdh1) in replication stress and origin of genomic instability. Oncogene 2016; 35: 3062–3070.

    Article  CAS  Google Scholar 

  35. Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011; 13: 243–253.

    Article  CAS  Google Scholar 

  36. Wilhelm T, Magdalou I, Barascu A, Techer H, Debatisse M, Lopez BS . Spontaneous slow replication fork progression elicits mitosis alterations in homologous recombination-deficient mammalian cells. Proc Natl Acad Sci U S A 2014; 111: 763–768.

    Article  CAS  Google Scholar 

  37. Teixeira LK, Wang X, Li Y, Ekholm-Reed S, Wu X, Wang P et al. Cyclin E deregulation promotes loss of specific genomic regions. Curr Biol 2015; 25: 1327–1333.

    Article  CAS  Google Scholar 

  38. Delgado-Esteban M, Garcia-Higuera I, Maestre C, Moreno S, Almeida A . APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nat Commun 2013; 4: 2879.

    Article  Google Scholar 

  39. Ayuda-Duran P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gomez M et al. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res 2014; 42: 7057–7068.

    Article  CAS  Google Scholar 

  40. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435–446.

    Article  CAS  Google Scholar 

  41. Lopez-Contreras AJ, Specks J, Barlow JH, Ambrogio C, Desler C, Vikingsson S et al. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes Dev 2015; 29: 690–695.

    Article  CAS  Google Scholar 

  42. Ruiz S, Lopez-Contreras AJ, Gabut M, Marion RM, Gutierrez-Martinez P, Bua S et al. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat Commun 2015; 6: 8036.

    Article  CAS  Google Scholar 

  43. Stillman B . Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proc Natl Acad Sci U S A 2013; 110: 14120–14121.

    Article  CAS  Google Scholar 

  44. D'Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 2012; 149: 1023–1034.

    Article  CAS  Google Scholar 

  45. Choudhury R, Bonacci T, Arceci A, Lahiri D, Mills CA, Kernan JL et al. APC/C and SCF(cyclin F) Constitute a Reciprocal Feedback Circuit Controlling S-Phase Entry. Cell Rep 2016; 16: 3359–3372.

    Article  CAS  Google Scholar 

  46. Zeman MK, Cimprich KA . Causes and consequences of replication stress. Nat Cell Biol 2014; 16: 2–9.

    Article  CAS  Google Scholar 

  47. Gaillard H, Garcia-Muse T, Aguilera A . Replication stress and cancer. Nat Rev Cancer 2015; 15: 276–289.

    Article  CAS  Google Scholar 

  48. Yokochi T, Gilbert DM . Replication labeling with halogenated thymidine analogs. Curr Protoc Cell Biol 2007; Chapter 22 (Unit 22): 10.

    PubMed  Google Scholar 

  49. Pu X, Wang Z, Klaunig JE . Alkaline Comet Assay for Assessing DNA Damage in Individual Cells. Curr Protoc Toxicol 2015; 65: 3 12 11–11.

    Google Scholar 

  50. Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S, Blanco L et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 2013; 20: 1383–1389.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the Spanish Ministry of Economy and Competitiveness MINECO (CSD2007-0015, BFU2011-28274 and BFU2014-55439) and Junta de Castilla y León (CSI151U13 and CSI084U16), the Swedish Cancer Society, the Knut and Alice Wallenberg Foundation and the Swedish Research Council (AC). IGH is supported by Fundación Científica de la Asociación Española contra el Cáncer (AECC). JG and RR were recipients of CSIC JAE and FPU predoctoral fellowships (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Moreno or I García-Higuera.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garzón, J., Rodríguez, R., Kong, Z. et al. Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1. Oncogene 36, 5808–5818 (2017). https://doi.org/10.1038/onc.2017.186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.186

This article is cited by

Search

Quick links