Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

UTX promotes hormonally responsive breast carcinogenesis through feed-forward transcription regulation with estrogen receptor

Abstract

UTX is implicated in embryonic development and lineage specification. However, how this X-linked histone demethylase contributes to the occurrence and progression of breast cancer remains to be clarified. Here we report that UTX is physically associated with estrogen receptor (ER) and functions in ER-regulated transcription. We showed that UTX coordinates with JHDM1D and CBP to direct H3K27 methylation–acetylation transition and to create a permissive chromatin state on ER targets. Genome-wide analysis of the transcriptional targets of UTX by ChIP-seq identified a set of genes such as chemokine receptor CXCR4 that are intimately involved in breast cancer tumorigenesis and metastasis. We demonstrated that UTX promotes the proliferation and migration of ER+ breast cancer cells. Interestingly, UTX itself is transactivated by ER, forming a feed-forward loop in the regulation of hormone response. Indeed, UTX is upregulated during ER+ breast cancer progression, and the expression level of UTX is positively correlated with that of CXCR4 and negatively correlated with the overall survival of ER+ breast cancer patients. Our study identified a feed-forward loop between UTX and ER in the regulation of hormonally responsive breast carcinogenesis, supporting the pursuit of UTX as an emerging therapeutic target for the intervention of certain ER+ breast cancer with specific epigenetic vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G . Genome regulation by polycomb and trithorax proteins. Cell 2007; 128: 735–745.

    Article  CAS  Google Scholar 

  2. Margueron R, Reinberg D . The Polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.

    Article  CAS  Google Scholar 

  3. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449: 731–734.

    Article  CAS  Google Scholar 

  4. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G . The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130: 1083–1094.

    Article  CAS  Google Scholar 

  5. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 2007; 449: 689–694.

    Article  CAS  Google Scholar 

  6. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K . Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 2007; 104: 18439–18444.

    Article  CAS  Google Scholar 

  7. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 2007; 318: 447–450.

    Article  CAS  Google Scholar 

  8. Tsukada Y, Ishitani T, Nakayama KI . KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 2010; 24: 432–437.

    Article  CAS  Google Scholar 

  9. Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011; 30: 249–262.

    Article  CAS  Google Scholar 

  10. Smith E, Shilatifard A . Enhancer biology and enhanceropathies. Nat Struct Mol Biol 2014; 21: 210–219.

    Article  CAS  Google Scholar 

  11. Ezponda T, Licht JD . Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination. Clin Cancer Res 2014; 20: 5001–5008.

    Article  CAS  Google Scholar 

  12. Kim KH, Roberts CW . Targeting EZH2 in cancer. Nat Med 2016; 22: 128–134.

    Article  CAS  Google Scholar 

  13. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  Google Scholar 

  14. Van der Meulen J, Speleman F, Van Vlierberghe P . The H3K27me3 demethylase UTX in normal development and disease. Epigenetics 2014; 9: 658–668.

    Article  Google Scholar 

  15. van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009; 41: 521–523.

    Article  CAS  Google Scholar 

  16. Wang JK, Tsai MC, Poulin G, Adler AS, Chen S, Liu H et al. The histone demethylase UTX enables RB-dependent cell fate control. Genes Dev 2010; 24: 327–332.

    Article  Google Scholar 

  17. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 2015; 125: 13–21.

    Article  CAS  Google Scholar 

  18. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 2014; 514: 513–517.

    Article  CAS  Google Scholar 

  19. Choi HJ, Park JH, Park M, Won HY, Joo HS, Lee CH et al. UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1. EMBO Rep 2015; 16: 1288–1298.

    Article  CAS  Google Scholar 

  20. Rocha-Viegas L, Villa R, Gutierrez A, Iriondo O, Shiekhattar R, Di Croce L . Role of UTX in retinoic acid receptor-mediated gene regulation in leukemia. Mol Cell Biol 2014; 34: 3765–3775.

    Article  Google Scholar 

  21. Kim JH, Sharma A, Dhar SS, Lee SH, Gu B, Chan CH et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res 2014; 74: 1705–1717.

    Article  CAS  Google Scholar 

  22. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J . The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20: 1915–1924.

    Article  CAS  Google Scholar 

  23. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W . CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016; 35: 816–826.

    Article  CAS  Google Scholar 

  24. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 2004; 64: 8604–8612.

    Article  CAS  Google Scholar 

  25. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  Google Scholar 

  26. Scala S . Molecular pathways: targeting the CXCR4-CXCL12 axis—untapped potential in the tumor microenvironment. Clin Cancer Res 2015; 21: 4278–4285.

    Article  CAS  Google Scholar 

  27. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015; 61: 1591–1602.

    Article  CAS  Google Scholar 

  28. Shang Y, Brown M . Molecular determinants for the tissue specificity of SERMs. Science 2002; 295: 2465–2468.

    Article  CAS  Google Scholar 

  29. Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H et al. Differential gene regulation by the SRC family of coactivators. Genes Dev 2004; 18: 1753–1765.

    Article  CAS  Google Scholar 

  30. Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 2005; 438: 981–987.

    Article  CAS  Google Scholar 

  31. Zhang H, Sun L, Liang J, Yu W, Zhang Y, Wang Y et al. The catalytic subunit of the proteasome is engaged in the entire process of estrogen receptor-regulated transcription. EMBO J 2006; 25: 4223–4233.

    Article  CAS  Google Scholar 

  32. Shi L, Sun L, Li Q, Liang J, Yu W, Yi X et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci USA 2011; 108: 7541–7546.

    Article  CAS  Google Scholar 

  33. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M . Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103: 843–852.

    Article  CAS  Google Scholar 

  34. Cavailles V, Dauvois S, L'Horset F, Lopez G, Hoare S, Kushner PJ et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 1995; 14: 3741–3751.

    Article  CAS  Google Scholar 

  35. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 2006; 312: 1798–1802.

    Article  CAS  Google Scholar 

  36. Cui Y, Niu A, Pestell R, Kumar R, Curran EM, Liu Y et al. Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Mol Endocrinol 2006; 20: 2020–2035.

    Article  CAS  Google Scholar 

  37. Ichinose H, Garnier JM, Chambon P, Losson R . Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 1997; 188: 95–100.

    Article  CAS  Google Scholar 

  38. Lavery DN, McEwan IJ . Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 2005; 391: 449–464.

    Article  CAS  Google Scholar 

  39. Simons SS Jr, Kumar R . Variable steroid receptor responses: intrinsically disordered AF1 is the key. Mol Cell Endocrinol 2013; 376: 81–84.

    Article  CAS  Google Scholar 

  40. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y . The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87: 953–959.

    Article  CAS  Google Scholar 

  41. Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 2011; 12: R83.

    Article  CAS  Google Scholar 

  42. Thorvaldsdottir H, Robinson JT, Mesirov JP . Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14: 178–192.

    Article  CAS  Google Scholar 

  43. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: 24–26.

    Article  CAS  Google Scholar 

  44. Harburg GC, Hinck L . Navigating breast cancer: axon guidance molecules as breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia 2011; 16: 257–270.

    Article  Google Scholar 

  45. Lee YH, Kim JH, Song GG . Genome-wide pathway analysis of breast cancer. Tumour Biol 2014; 35: 7699–7705.

    Article  CAS  Google Scholar 

  46. Teicher BA, Fricker SP . CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010; 16: 2927–2931.

    Article  CAS  Google Scholar 

  47. Yu Y, Li H, Xue B, Jiang X, Huang K, Ge J et al. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway. DNA Cell Biol 2014; 33: 543–549.

    Article  CAS  Google Scholar 

  48. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  Google Scholar 

  49. Ringner M, Fredlund E, Hakkinen J, Borg A, Staaf J . GOBO: gene expression-based outcome for breast cancer online. PLoS ONE 2011; 6: e17911.

    Article  CAS  Google Scholar 

  50. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 2016; 7: 49322–49333.

    Article  Google Scholar 

  51. Liang J, Shang Y . Estrogen and cancer. Annu Rev Physiol 2013; 75: 225–240.

    Article  CAS  Google Scholar 

  52. Zhang XH, Giuliano M, Trivedi MV, Schiff R, Osborne CK . Metastasis dormancy in estrogen receptor-positive breast cancer. Clin Cancer Res 2013; 19: 6389–6397.

    Article  CAS  Google Scholar 

  53. Hart CD, Migliaccio I, Malorni L, Guarducci C, Biganzoli L, Di Leo A . Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. Nat Rev Clin Oncol 2015; 12: 541–552.

    Article  Google Scholar 

  54. Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev 2016; 30: 508–521.

    Article  CAS  Google Scholar 

  55. Park UH, Kang MR, Kim EJ, Kwon YS, Hur W, Yoon SK et al. ASXL2 promotes proliferation of breast cancer cells by linking ERalpha to histone methylation. Oncogene 2016; 35: 3742–3752.

    Article  CAS  Google Scholar 

  56. Wade MA, Jones D, Wilson L, Stockley J, Coffey K, Robson CN et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res 2015; 43: 196–207.

    Article  CAS  Google Scholar 

  57. Mohammed H, D'Santos C, Serandour AA, Ali HR, Brown GD, Atkins A et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 2013; 3: 342–349.

    Article  CAS  Google Scholar 

  58. Zwart W, Theodorou V, Kok M, Canisius S, Linn S, Carroll JS . Oestrogen receptor-co-factor-chromatin specificity in the transcriptional regulation of breast cancer. EMBO J 2011; 30: 4764–4776.

    Article  CAS  Google Scholar 

  59. Svotelis A, Bianco S, Madore J, Huppe G, Nordell-Markovits A, Mes-Masson AM et al. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERalpha ligand dependency. EMBO J 2011; 30: 3947–3961.

    Article  CAS  Google Scholar 

  60. Xu C, Zhao H, Chen H, Yao Q . CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Dev Ther 2015; 9: 4953–4964.

    CAS  Google Scholar 

  61. Rhodes LV, Short SP, Neel NF, Salvo VA, Zhu Y, Elliott S et al. Cytokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer. Cancer Res 2011; 71: 603–613.

    Article  CAS  Google Scholar 

  62. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343: 84–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (973 Program: 2014CB542004 to JL and YS) from the Ministry of Science and Technology of China, and grants (31371301 and 81572771 to JL and 91219201 and 81130048 to YS) from the National Natural Science Foundation of China.

Accession number

The UTX ChIP-seq data have been deposited to the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), the accession number is GSE96996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Liang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Liu, X., Zhang, Y. et al. UTX promotes hormonally responsive breast carcinogenesis through feed-forward transcription regulation with estrogen receptor. Oncogene 36, 5497–5511 (2017). https://doi.org/10.1038/onc.2017.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.157

This article is cited by

Search

Quick links