Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis

Abstract

The receptor for advanced glycation end products (RAGE) is highly expressed in various cancers and is correlated with poorer outcome in breast and other cancers. Here we tested the role of targeting RAGE by multiple approaches in the tumor and tumor microenvironment, to inhibit the metastatic process. We first tested how RAGE impacts tumor cell-intrinsic mechanisms using either RAGE overexpression or knockdown with short hairpin RNAs (shRNAs). RAGE ectopic overexpression in breast cancer cells increased MEK-EMT (MEK-epithelial-to-mesenchymal transition) signaling, transwell invasion and soft agar colony formation, and in vivo promoted lung metastasis independent of tumor growth. RAGE knockdown with multiple independent shRNAs in breast cancer cells led to decreased transwell invasion and soft agar colony formation, without affecting proliferation. In vivo, targeting RAGE shRNA knockdown in human and mouse breast cancer cells, decreased orthotopic tumor growth, reduced tumor angiogenesis and recruitment of inflammatory cells, and markedly decreased metastasis to the lung and liver in multiple xenograft and syngeneic mouse models. To test the non-tumor cell microenvironment role of RAGE, we performed syngeneic studies with orthotopically injected breast cancer cells in wild-type and RAGE-knockout C57BL6 mice. RAGE-knockout mice displayed striking impairment of tumor cell growth compared with wild-type mice, along with decreased mitogen-activated protein kinase signaling, tumor angiogenesis and inflammatory cell recruitment. To test the combined inhibition of RAGE in both tumor cell-intrinsic and non-tumor cells of the microenvironment, we performed in vivo treatment of xenografted tumors with FPS-ZM1 (1 mg/kg, two times per week). Compared with vehicle, FPS-ZM1 inhibited primary tumor growth, inhibited tumor angiogenesis and inflammatory cell recruitment and, most importantly, prevented metastasis to the lung and liver. These data demonstrate that RAGE drives tumor progression and metastasis through distinct tumor cell-intrinsic and -extrinsic mechanisms, and may represent a novel and therapeutically viable approach for treating metastatic cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  2. 2

    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405: 354–360.

    CAS  Article  Google Scholar 

  3. 3

    Kalea AZ, See F, Harja E, Arriero M, Schmidt AM, Hudson BI . Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res 2010; 70: 5628–5638.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 2010; 17: 666–676.

    CAS  Article  Google Scholar 

  5. 5

    Liao S, Li J, Wei W, Wang L, Zhang Y, Li J et al. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev 2011; 12: 1061–1065.

    PubMed  Google Scholar 

  6. 6

    Larsson SC, Mantzoros CS, Wolk A . Diabetes mellitus and risk of breast cancer:a meta-analysis. Int J Cancer 2007; 121: 856–862.

    CAS  Article  Google Scholar 

  7. 7

    Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YCP et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267: 14998–15004.

    CAS  PubMed  Google Scholar 

  8. 8

    Logsdon CD, Fuentes MK, Huang EH, Arumugam T . RAGE and RAGE ligands in cancer. Curr Mol Med 2007; 7: 777–789.

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G . S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 2011; 9: 133–148.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Bjork P, Kallberg E, Wellmar U, Riva M, Olsson A, He Z et al. Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS One 2013; 8: e63012.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A . S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 2007; 282: 31317–31331.

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995; 270: 25752–25761.

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 2003; 198: 1507–1515.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ et al. Structural basis for ligand recognition and activation of RAGE. Structure 2010; 18: 1342–1352.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hudson BI, Kalea AZ, Arriero MD, Harja E, Boulanger E, D'Agati V . Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 2008; 283: 34457–34468.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Jules J, Miguel D, Hudson BI . Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One 2013; 8: e78267.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Allmen EU, Koch M, Fritz G, Legler DF . V domain of RAGE interacts with AGEs on prostate carcinoma cells. Prostate 2008; 68: 748–758.

    Article  PubMed  Google Scholar 

  18. 18

    Abe R, Yamagishi S . AGE-RAGE system and carcinogenesis. Curr Pharm Des 2008; 14: 940–945.

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Kislinger T, Fu C, Huber C, Qu W, Taguchi A, Yan SD et al. N (epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999; 274: 31740–31749.

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Huang JS, Guh JY, Chen HC, Hung WC, Lai YH, Chuang LY . Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem 2001; 81: 102–113.

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 2001; 50: 1495–1504.

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM . Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 1997; 272: 17810–17814.

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Huttunen HJ, Fages C, Rauvala H . Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999; 274: 19919–19924.

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Hsieh HL, Schafer BW, Sasaki N, Heizmann CW . Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun 2003; 307: 375–381.

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Nasser MW, Wani NA, Ahirwar DK, Powell CA, Ravi J, Elbaz M et al. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res 2015; 75: 974–985.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Yin C, Li H, Zhang B, Liu Y, Lu G, Lu S et al. RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial–mesenchymal transition. Breast Cancer Res Treat 2013; 142: 297–309.

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Sirotnak FM, DeGraw JI, Schmid FA, Goutas LJ, Moccio DM . New folate analogs of the 10-deaza-aminopterin series. Further evidence for markedly increased antitumor efficacy compared with methotrexate in ascitic and solid murine tumor models. Cancer Chemother Pharmacol 1984; 12: 26–30.

    CAS  PubMed  Google Scholar 

  31. 31

    Stewart TJ, Abrams SI . Altered immune function during long-term host-tumor interactions can be modulated to retard autochthonous neoplastic growth. J Immunol 2007; 179: 2851–2859.

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Yamagishi S, Adachi H, Nakamura K, Matsui T, Jinnouchi Y, Takenaka K et al. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism 2006; 55: 1227–1231.

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Jackel A, Deichmann M, Waldmann V, Bock M, Naher H . S-100 beta protein in serum, a tumor marker in malignant melanoma– current state of knowledge and clinical experience. Hautarzt 1999; 50: 250–256.

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Pietzsch J, Hoppmann S . Human S100A12: a novel key player in inflammation? Amino Acids 2009; 36: 381–389.

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Arumugam T, Ramachandran V, Gomez SB, Schmidt AM, Logsdon CD. . S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res 2012; 18: 4356–4364.

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Kang R, Loux T, Tang D, Schapiro NE, Vernon P, Livesey KM et al. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc Natl Acad Sci USA 2012; 109: 7031–7036.

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Xiong F, Leonov S, Howard AC, Xiong S, Zhang B, Mei L et al. Receptor for advanced glycation end products (RAGE) prevents endothelial cell membrane resealing and regulates F-actin remodeling in a beta-catenin-dependent manner. J Biol Chem 2011; 286: 35061–35070.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L et al. Regulation of osteoclast function and bone mass by RAGE. J Exp Med 2006; 203: 1067–1080.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Zen K, Chen CX, Chen YT, Wilton R, Liu Y . Receptor for advanced glycation endproducts mediates neutrophil migration across intestinal epithelium. J Immunol 2007; 178: 2483–2490.

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Drews-Elger K, Iorns E, Dias A, Ward TM, Dean SJ, Clark J et al. Infiltrating S100A8+ myeloid cells promote metastatic spread of human breast cancer and predict poor clinical outcome. Breast Cancer Res Treat 2014; 148: 41–59.

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012; 122: 1377–1392.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14: 518–527.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    CAS  Article  Google Scholar 

  44. 44

    Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC . Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 2009; 11: R7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100: 8418–8423.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  47. 47

    Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukocyte Biol 2008; 83: 1484–1492.

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Sharaf H, Matou-Nasri S, Wang Q, Rabhan Z, Al-Eidi H, Al AA et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys Acta 2015; 1852: 429–441.

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T et al. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis 2011; 32: 1167–1175.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Radia AM, Yaser AM, Ma X, Zhang J, Yang C, Dong Q et al. Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci 2013; 14: 7959–7978.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Drews-Elger K, Brinkman JA, Miller P, Shah SH, Harrell JC, da Silva TG et al. Primary breast tumor-derived cellular models: characterization of tumorigenic, metastatic, and cancer-associated fibroblasts in dissociated tumor (DT) cultures. Breast Cancer Res Treat 2014; 144: 503–517.

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Vernon PJ, Loux TJ, Schapiro NE, Kang R, Muthuswamy R, Kalinski P et al. The receptor for advanced glycation end products promotes pancreatic carcinogenesis and accumulation of myeloid-derived suppressor cells. J Immunol 2013; 190: 1372–1379.

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Furstenberger G, Muller-Decker K et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 2008; 205: 275–285.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res 2014; 74: 7285–7297.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H et al. RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin. Diabetes 2006; 55: 2510–2522.

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99: 1768–1781.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Career Catalyst Research from Susan G Komen for the Cure Grant No. CCR15331076 and by the American Cancer Society Institutional Research Grant No. 98-277-10.

Author contributions

BIH, MEL, DEA and JMS designed the research. TK, KDE, AE, AB, DZ and AB performed the experiments. TK, KDE, AE and BIH performed the analysis of the data. PCM analyzed gene expression from the Oncomine database. YY and HY designed, generated and bred the RAGE-knockout mouse model. BIH and MEL wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B I Hudson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwak, T., Drews-Elger, K., Ergonul, A. et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. Oncogene 36, 1559–1572 (2017). https://doi.org/10.1038/onc.2016.324

Download citation

Further reading