Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RAC-LATS1/2 signaling regulates YAP activity by switching between the YAP-binding partners TEAD4 and RUNX3

Abstract

The tumor-suppressor RUNX3 has a critical role in a lineage determination, cell cycle arrest and apoptosis. Lozenge (Lz), a Drosophila homolog of mammalian RUNX family members, has integral roles in these processes and specifically in eye cell fate determination. To elucidate the genetic modifiers of Lz/RUNX3, we performed a large-scale functional screen in a fly mutant library. The screen revealed genetic interactions between the Lz, Rac and Hippo pathways. Analysis of interactions among these genes revealed that the defective phenotype resulting from activation of Yki, an end point effector of the Hippo pathway, was suppressed by Lz and enhanced by Rac-Trio. Molecular biological analysis using mammalian homologs reveled that LATS1/2-mediated YAP phosphorylation-facilitated dissociation of the YAP-TEAD4 complex and association of the YAP-RUNX3 complex. When cells were stimulated to proliferate, activated RAC-TRIO signaling inhibited LATS1/2-mediated YAP phosphorylation; consequently, YAP dissociated from RUNX3 and associated with TEAD, thereby replacing the YAP-RUNX3 complex with YAP-TEAD. RUNX3 contributed to both association and dissociation of YAP-TEAD complex, most likely through the formation of the YAP-TEAD-RUNX3 ternary complex. Ectopic expression of RUNX3 in MKN28 gastric cancer cells reduced tumorigenicity, and the tumor-suppressive activity of RUNX3 was associated with its ability to interact with YAP. These results identify a novel regulatory mechanism, mediated by the Hippo and RAC-TRIO pathways, that changes the binding partner of YAP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ito Y, Bae SC, Chuang LS . The RUNX family: developmental regulators in cancer. Nat Rev Cancer 2015; 15: 81–95.

    Article  CAS  PubMed  Google Scholar 

  2. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002; 109: 113–124.

    Article  CAS  PubMed  Google Scholar 

  3. Qiao Y, Lin SJ, Chen Y, Voon DC, Zhu F, Chuang LS et al. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene 2015; 35: 2664–2674.

    Article  PubMed  Google Scholar 

  4. Lee YS, Bae SC . How do K-RAS-activated cells evade cellular defense mechanisms? Oncogene 2015; 35: 827–832.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH et al. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 2013; 24: 603–616.

    Article  PubMed  Google Scholar 

  6. Canon J, Banerjee U . Runt and Lozenge function in Drosophila development. Semin Cell Dev Biol 2000; 11: 327–336.

    Article  CAS  PubMed  Google Scholar 

  7. Daga A, Karlovich CA, Dumstrei K, Banerjee U . Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev 1996; 10: 1194–1205.

    Article  CAS  PubMed  Google Scholar 

  8. Flores GV, Daga A, Kalhor HR, Banerjee U . Lozenge is expressed in pluripotent precursor cells and patterns multiple cell types in the Drosophila eye through the control of cell-specific transcription factors. Development 1998; 125: 3681–3687.

    CAS  PubMed  Google Scholar 

  9. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu FX, Guan KL . The Hippo pathway: regulators and regulations. Genes Dev 2013; 27: 355–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu T, Wang W, Zhang S, Stewart RA, Yu W . Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 1995; 121: 1053–1063.

    CAS  PubMed  Google Scholar 

  12. Boggiano JC, Vanderzalm PJ, Fehon RG . Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 2011; 21: 888–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poon CL, Lin JI, Zhang X, Harvey KF . The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 2011; 21: 896–906.

    Article  CAS  PubMed  Google Scholar 

  14. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh H, Irvine KD . In vivo regulation of Yorkie phosphorylation and localization. Development 2008; 135: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  17. Ren F, Zhang L, Jiang J . Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 2010; 337: 303–312.

    Article  CAS  PubMed  Google Scholar 

  18. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A . SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 2008; 18: 435–441.

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, Liu Y, Zheng Y, Dong J, Pan D . The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 2008; 14: 388–398.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J . The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 2008; 14: 377–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML . TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 2001; 15: 1229–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 2004; 23: 790–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y . A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 1999; 18: 2551–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 2007; 447: 1017–1020.

    Article  CAS  PubMed  Google Scholar 

  26. Rorth P . A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 1996; 93: 12418–12422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wildonger J, Mann RS . The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 2005; 132: 2263–2272.

    Article  CAS  PubMed  Google Scholar 

  28. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouquier N, Vignal E, Charrasse S, Weill M, Schmidt S, Leonetti JP et al. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Chem Biol 2009; 16: 657–666.

    Article  CAS  PubMed  Google Scholar 

  30. Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM et al. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 2012; 19: 955–962.

    Article  CAS  PubMed  Google Scholar 

  31. Adler JJ, Johnson DE, Heller BL, Bringman LR, Ranahan WP, Conwell MD et al. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc Natl Acad Sci USA 2013; 110: 17368–17373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 2015; 17: 500–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25: 831–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mo JS, Park HW, Guan KL . The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014; 15: 642–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 2014; 16: 357–366.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci USA 2014; 111: E89–E98.

    Article  CAS  PubMed  Google Scholar 

  37. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H . Hippo pathway regulation by cell morphology and stress fibers. Development 2011; 138: 3907–3914.

    Article  CAS  PubMed  Google Scholar 

  38. Levy D, Reuven N, Shaul Y . A regulatory circuit controlling Itch-mediated p73 degradation by Runx. J Biol Chem 2008; 283: 27462–27468.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S-CB is supported by a Creative Research Grant (2014R1A3A2030690) through the National Research Foundation (NRF) of Korea and a Research Grant of Chungbuk National University in 2012. J-WJ is supported by Basic Science Research Program (2014R1A1A2009492) through the NRF funded by the Ministry of Education of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-C Bae.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, JW., Kim, MK., Lee, YS. et al. RAC-LATS1/2 signaling regulates YAP activity by switching between the YAP-binding partners TEAD4 and RUNX3. Oncogene 36, 999–1011 (2017). https://doi.org/10.1038/onc.2016.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.266

This article is cited by

Search

Quick links