Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence

Abstract

Despite recent insights into prostate cancer (PCa)-associated genetic changes, full understanding of prostate tumorigenesis remains elusive owing to complexity of interactions among various cell types and soluble factors present in prostate tissue. We found the upregulation of nuclear factor of activated T cells c1 (NFATc1) in human PCa and cultured PCa cells, but not in normal prostates and non-tumorigenic prostate cells. To understand the role of NFATc1 in prostate tumorigenesis in situ, we temporally and spatially controlled the activation of NFATc1 in mouse prostate and showed that such activation resulted in prostatic adenocarcinoma with features similar to those seen in human PCa. Our results indicate that the activation of a single transcription factor, NFATc1 in prostatic luminal epithelium to PCa can affect expression of diverse factors in both cells harboring the genetic changes and in neighboring cells through microenvironmental alterations. In addition to the activation of oncogenes c-MYC and STAT3 in tumor cells, a number of cytokines and growth factors, such as IL1β, IL6 and SPP1 (osteopontin, a key biomarker for PCa), were upregulated in NFATc1-induced PCa, establishing a tumorigenic microenvironment involving both NFATc1 positive and negative cells for prostate tumorigenesis. To further characterize interactions between genes involved in prostate tumorigenesis, we generated mice with both NFATc1 activation and Pten inactivation in prostate. We showed that NFATc1 activation led to acceleration of Pten null-driven prostate tumorigenesis by overcoming the PTEN loss-induced cellular senescence through inhibition of p21 activation. This study provides direct in vivo evidence of an oncogenic role of NFATc1 in prostate tumorigenesis and reveals multiple functions of NFATc1 in activating oncogenes, in inducing proinflammatory cytokines, in oncogene addiction, and in overcoming cellular senescence, which suggests calcineurin-NFAT signaling as a potential target in preventing PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alberti C . Genetic and microenvironmental implications in prostate cancer progression and metastasis. Eur Rev Med Pharmacol Sci 2008; 12: 167–175.

    CAS  PubMed  Google Scholar 

  2. Graef IA, Chen F, Crabtree GR . NFAT signaling in vertebrate development. Curr Opin Genet Dev 2001; 11: 505–512.

    Article  CAS  PubMed  Google Scholar 

  3. Pan MG, Xiong Y, Chen F . NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13: 543–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neal JW, Clipstone NA . A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem 2003; 278: 17246–17254.

    Article  CAS  PubMed  Google Scholar 

  5. Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 2006; 25: 3714–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N . TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 2007; 26: 7380–7385.

    Article  CAS  PubMed  Google Scholar 

  7. Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Ishiguro H et al. The role of NFATc1 in prostate cancer progression: Cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion. Prostate 2015; 75: 573–584.

    Article  CAS  PubMed  Google Scholar 

  8. Lee SJ, Lee K, Yang X, Jung C, Gardner T, Kim HS et al. NFATc1 with AP-3 site binding specificity mediates gene expression of prostate-specific-membrane-antigen. J Mol Biol 2003; 330: 749–760.

    Article  CAS  PubMed  Google Scholar 

  9. Rafiei S, Komarova SV . Molecular signaling pathways mediating osteoclastogenesis induced by prostate cancer cells. BMC Cancer 2013; 13: 605.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kavitha CV, Deep G, Gangar SC, Jain AK, Agarwal C, Agarwal R . Silibinin inhibits prostate cancer cells- and RANKL-induced osteoclastogenesis by targeting NFATc1, NF-kappaB, and AP-1 activation in RAW264.7 cells. Mol Carcinog 2014; 53: 169–180.

    Article  CAS  PubMed  Google Scholar 

  11. Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A . The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 2002; 4: 540–544.

    Article  CAS  PubMed  Google Scholar 

  12. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A . Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005; 20: 539–550.

    Article  CAS  PubMed  Google Scholar 

  13. Yiu GK, Toker A . NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J Biol Chem 2006; 281: 12210–12217.

    Article  CAS  PubMed  Google Scholar 

  14. Yiu GK, Kaunisto A, Chin YR, Toker A . NFAT promotes carcinoma invasive migration through glypican-6. Biochem J 2011; 440: 157–166.

    Article  CAS  PubMed  Google Scholar 

  15. Foldynova-Trantirkova S, Sekyrova P, Tmejova K, Brumovska E, Bernatik O, Blankenfeldt W et al. Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res 2010; 12: R30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP . Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol 2008; 28: 7168–7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR et al. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 2010; 21: 1657–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM et al. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res 2009; 15: 5794–5802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang J, Jia P, Zhao Z, Shen B . Key regulators in prostate cancer identified by co-expression module analysis. BMC Genomics 2014; 15: 1015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 2001; 101: 61–69.

    Article  CAS  PubMed  Google Scholar 

  22. Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res 2005; 33: e51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR . Enhanced NFATc1 Nuclear Occupancy Causes T Cell Activation Independent of CD28 Costimulation. J Immunol 2007; 178: 4315–4321.

    Article  CAS  PubMed  Google Scholar 

  24. Lagunas L, Clipstone NA . Deregulated NFATc1 activity transforms murine fibroblasts via an autocrine growth factor-mediated Stat3-dependent pathway. J Cell Biochem 2009; 108: 237–248.

    Article  CAS  PubMed  Google Scholar 

  25. Tripathi P, Wang Y, Coussens M, Manda KR, Casey AM, Lin C et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene 2014; 33: 1840–1849.

    Article  CAS  PubMed  Google Scholar 

  26. Karlou M, Tzelepi V, Efstathiou E . Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 2010; 7: 494–509.

    Article  PubMed  Google Scholar 

  27. Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 2011; 470: 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nilsson-Berglund LM, Zetterqvist AV, Nilsson-Ohman J, Sigvardsson M, Gonzalez Bosc LV, Smith ML et al. Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia. Arterioscler Thromb Vasc Biol 2010; 30: 218–224.

    Article  CAS  PubMed  Google Scholar 

  29. Torti D, Trusolino L . Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011; 3: 623–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCormick F . Cancer therapy based on oncogene addiction. J Surg Oncol 2011; 103: 464–467.

    Article  CAS  PubMed  Google Scholar 

  31. Weinstein IB, Joe A . Oncogene addiction. Cancer Res 2008; 68: 3077–3080 discussion 3080.

    Article  CAS  PubMed  Google Scholar 

  32. Suzman DL, Antonarakis ES . Castration-resistant prostate cancer: latest evidence and therapeutic implications. Ther Adv Med Oncol 2014; 6: 167–179.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carnero A, Paramio JM . The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front Oncol 2014; 4: 252.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ortega-Molina A, Serrano M . PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 2013; 24: 184–189.

    Article  CAS  PubMed  Google Scholar 

  35. Blagosklonny MV . Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 2002; 1: 391–393.

    Article  CAS  PubMed  Google Scholar 

  36. Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O et al. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett 2012; 586: 3429–3434.

    Article  CAS  PubMed  Google Scholar 

  37. Culig Z . Proinflammatory cytokine interleukin-6 in prostate carcinogenesis. Am J Clin Exp Urol 2014; 2: 231–238.

    PubMed  PubMed Central  Google Scholar 

  38. Nguyen DP, Li J, Tewari AK . Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int 2014; 113: 986–992.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2014; 34: 107–119.

    Google Scholar 

  40. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 2001; 98: 7319–7324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189: 63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Phin S, Moore MW, Cotter PD . Genomic Rearrangements of PTEN in Prostate Cancer. Front Oncol 2013; 3: 240.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wei Z, Jiang X, Qiao H, Zhai B, Zhang L, Zhang Q et al. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal 2013; 25: 931–938.

    Article  CAS  PubMed  Google Scholar 

  44. Huang H, Zhao W, Yang D . Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells. Biochem Biophys Res Commun 2012; 418: 186–190.

    Article  CAS  PubMed  Google Scholar 

  45. Janik P, Briand P, Hartmann NR . The effect of estrone-progesterone treatment on cell proliferation kinetics of hormone-dependent GR mouse mammary tumors. Cancer Res 1975; 35: 3698–3704.

    CAS  PubMed  Google Scholar 

  46. Zhang H, Teng Y, Kong Y, Kowalski PE, Cohen SN . Suppression of human tumor cell proliferation by Smurf2-induced senescence. J Cell Physiol 2008; 215: 613–620.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Gerald Crabtree and Minggui Pan for providing the TetO-NFATc1Nuc mice. FC is supported in part by grants from DoD (PC130118) and NIH (DK087960). ZY is supported in part by NIH R01CA174714. LD is supported in part by grants from NIH (R01CA180006, R01CA178383 and U01HG006517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manda, K., Tripathi, P., Hsi, A. et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene 35, 3282–3292 (2016). https://doi.org/10.1038/onc.2015.389

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.389

This article is cited by

Search

Quick links