Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Context-dependent actions of Polycomb repressors in cancer

Subjects

Abstract

Polycomb Group (PcG) proteins form Polycomb Repressive Complexes (PRCs) that function as epigenetic repressors of gene expression. The large variety of PcG proteins, in addition to the high number of paralogs, allows for the formation of diverse PRCs with different properties, providing fine-tuned control over cell specification. Initially identified as being oncogenes, a small number of PcG genes are involved in tumor development in part through the repression of the CDKN2A locus. Therefore, enhanced PcG-mediated repression has long been assumed to be cancer promoting. However, recent data have revealed that for some cancers, PcG proteins act as tumor suppressors, indicating that this traditional view is oversimplified. In this review, we present an overview of the roles of PcG genes in oncogenesis and how the nature of their role is context dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039–1043.

    CAS  Google Scholar 

  2. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V . Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 2002; 111: 185–196.

    CAS  Google Scholar 

  3. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002; 111: 197–208.

    CAS  Google Scholar 

  4. Min J, Zhang Y, Xu RM . Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 2003; 17: 1823–1828.

    CAS  Google Scholar 

  5. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S . Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 2003; 17: 1870–1881.

    CAS  Google Scholar 

  6. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431: 873–878.

    CAS  Google Scholar 

  7. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 2012; 148: 664–678.

    CAS  Google Scholar 

  8. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014; 157: 1445–1459.

    CAS  Google Scholar 

  9. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 2014; 7: 1456–1470.

    CAS  Google Scholar 

  10. Kalb R, Latwiel S, Baymaz HI, Jansen PW, Muller CW, Vermeulen M et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 2014; 21: 569–571.

    CAS  Google Scholar 

  11. Schwartz YB, Pirrotta V . Ruled by ubiquitylation: a new order for polycomb recruitment. Cell Rep 2014; 8: 321–325.

    CAS  Google Scholar 

  12. Scelfo A, Piunti A, Pasini D . The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins? FEBS J 2014; 282: 1703–1722.

    Google Scholar 

  13. Aguilo F, Zhou MM, Walsh MJ . Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 2011; 71: 5365–5369.

    CAS  Google Scholar 

  14. Brockdorff N, Noncoding RNA . and Polycomb recruitment. RNA 2013; 19: 429–442.

    CAS  Google Scholar 

  15. Karapetyan AR, Buiting C, Kuiper RA, Coolen MW . Regulatory roles for long ncRNA and mRNA. Cancers 2013; 5: 462–490.

    CAS  Google Scholar 

  16. Peschansky VJ, Wahlestedt C . Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2014; 9: 3–12.

    CAS  Google Scholar 

  17. Bengani H, Mendiratta S, Maini J, Vasanthi D, Sultana H, Ghasemi M et al. Identification and validation of a putative polycomb responsive element in the human genome. PLoS ONE 2013; 8: e67217.

    CAS  Google Scholar 

  18. Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE . A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 2010; 140: 99–110.

    CAS  Google Scholar 

  19. Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 2009; 138: 885–897.

    CAS  Google Scholar 

  20. Cuddapah S, Roh TY, Cui K, Jose CC, Fuller MT, Zhao K et al. A novel human polycomb binding site acts as a functional polycomb response element in Drosophila. PLoS ONE 2012; 7: e36365.

    CAS  Google Scholar 

  21. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 2008; 4: e1000242.

    Google Scholar 

  22. Lynch MD, Smith AJ, De Gobbi M, Flenley M, Hughes JR, Vernimmen D et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J 2012; 31: 317–329.

    CAS  Google Scholar 

  23. Mendenhall EM, Koche RP, Truong T, Zhou VW, Issac B, Chi AS et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 2010; 6: e1001244.

    Google Scholar 

  24. Tanay A, O'Donnell AH, Damelin M, Bestor TH . Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Natl Acad Sci USA 2007; 104: 5521–5526.

    CAS  Google Scholar 

  25. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 2012; 45: 344–356.

    CAS  Google Scholar 

  26. Jermann P, Hoerner L, Burger L, Schubeler D . Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. Proc Natl Acad Sci USA 2014; 111: E3415–E3421.

    CAS  Google Scholar 

  27. Hosogane M, Funayama R, Nishida Y, Nagashima T, Nakayama K . Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet 2013; 9: e1003698.

    CAS  Google Scholar 

  28. Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 2012; 337: 971–975.

    CAS  Google Scholar 

  29. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K . Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 2014; 55: 347–360.

    CAS  Google Scholar 

  30. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    CAS  Google Scholar 

  31. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 2010; 107: 20980–20985.

    CAS  Google Scholar 

  32. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247–5255.

    CAS  Google Scholar 

  33. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117: 2451–2459.

    CAS  Google Scholar 

  34. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 2012; 109: 2989–2994.

    CAS  Google Scholar 

  35. Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 2013; 45: 1386–1391.

    CAS  Google Scholar 

  36. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    CAS  Google Scholar 

  37. Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.

    CAS  Google Scholar 

  38. Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 2013; 123: 5009–5022.

    CAS  Google Scholar 

  39. Sahasrabuddhe AA, Chen X, Chung F, Velusamy T, Lim MS, Elenitoba-Johnson KS . Oncogenic Y641 mutations in EZH2 prevent Jak2/beta-TrCP-mediated degradation. Oncogene 2014; 34: 445–454.

    Google Scholar 

  40. Berg T, Thoene S, Yap D, Wee T, Schoeler N, Rosten P et al. A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. Blood 2014; 123: 3914–3924.

    CAS  Google Scholar 

  41. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

    CAS  Google Scholar 

  42. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 2013; 9: 643–650.

    CAS  Google Scholar 

  43. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    CAS  Google Scholar 

  44. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 2010; 24: 1799–1804.

    CAS  Google Scholar 

  45. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010; 42: 665–667.

    Article  CAS  Google Scholar 

  46. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    CAS  Google Scholar 

  47. Score J, Hidalgo-Curtis C, Jones AV, Winkelmann N, Skinner A, Ward D et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 2012; 119: 1208–1213.

    CAS  Google Scholar 

  48. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  Google Scholar 

  49. Guglielmelli P, Biamonte F, Score J, Hidalgo-Curtis C, Cervantes F, Maffioli M et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 2011; 118: 5227–5234.

    CAS  Google Scholar 

  50. Grossmann V, Kohlmann A, Eder C, Haferlach C, Kern W, Cross NC et al. Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance. Leukemia 2011; 25: 877–879.

    CAS  Google Scholar 

  51. Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 2014; 28: 1804–1810.

    CAS  Google Scholar 

  52. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    CAS  Google Scholar 

  53. Muto T, Sashida G, Oshima M, Wendt GR, Mochizuki-Kashio M, Nagata Y et al. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J Exp Med 2013; 210: 2627–2639.

    CAS  Google Scholar 

  54. Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun 2014; 5: 4177.

    CAS  Google Scholar 

  55. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120: 1107–1117.

    CAS  Google Scholar 

  56. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci USA 2012; 109: 5028–5033.

    CAS  Google Scholar 

  57. Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 2012; 18: 298–301.

    CAS  Google Scholar 

  58. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 2012; 26: 651–656.

    CAS  Google Scholar 

  59. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482: 226–231.

    CAS  Google Scholar 

  60. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012; 44: 251–253.

    CAS  Google Scholar 

  61. Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT, Heguy A et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 2013; 23: 558–564.

    CAS  Google Scholar 

  62. Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 2013; 27: 985–990.

    CAS  Google Scholar 

  63. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013; 340: 857–861.

    CAS  Google Scholar 

  64. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013; 24: 660–672.

    CAS  Google Scholar 

  65. Funato K, Major T, Lewis PW, Allis CD, Tabar V . Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 2014; 346: 1529–1533.

    CAS  Google Scholar 

  66. Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A et al. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 2006; 129: 2416–2425.

    Google Scholar 

  67. Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007; 53: 503–517.

    CAS  Google Scholar 

  68. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474–478.

    CAS  Google Scholar 

  69. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17–30.

    CAS  Google Scholar 

  70. Borodovsky A, Salmasi V, Turcan S, Fabius AW, Baia GS, Eberhart CG et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 2013; 4: 1737–1747.

    Google Scholar 

  71. Turcan S, Fabius AW, Borodovsky A, Pedraza A, Brennan C, Huse J et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget 2013; 4: 1729–1736.

    Google Scholar 

  72. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22: 425–437.

    CAS  Google Scholar 

  73. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17: 510–522.

    CAS  Google Scholar 

  74. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012; 483: 479–483.

    CAS  Google Scholar 

  75. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340: 626–630.

    CAS  Google Scholar 

  76. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014; 20: 1394–1396.

    CAS  Google Scholar 

  77. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678–2690.

    CAS  Google Scholar 

  78. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A . Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 1991; 65: 737–752.

    CAS  Google Scholar 

  79. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM . Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 1991; 65: 753–763.

    CAS  Google Scholar 

  80. Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G . BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 2009; 29: 8884–8896.

    CAS  Google Scholar 

  81. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 2007; 12: 328–341.

    CAS  Google Scholar 

  82. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Google Scholar 

  83. Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009; 119: 3626–3636.

    CAS  Google Scholar 

  84. Huang J, Qiu Y, Chen G, Huang L, He J . The relationship between Bmi-1 and the epithelial-mesenchymal transition in lung squamous cell carcinoma. Med Oncol 2012; 29: 1606–1613.

    CAS  Google Scholar 

  85. Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattiroli F, Song JY et al. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J Clin Invest 2012; 122: 1920–1932.

    CAS  Google Scholar 

  86. Facchino S, Abdouh M, Chatoo W, Bernier G . BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 2010; 30: 10096–10111.

    CAS  Google Scholar 

  87. Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M et al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011; 31: 1972–1982.

    CAS  Google Scholar 

  88. Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW et al. In vivo RNAi screen for BMI1 targets identifies TGF-beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 2013; 23: 660–676.

    CAS  Google Scholar 

  89. Kang Y, Chen CR, Massague J . A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003; 11: 915–926.

    CAS  Google Scholar 

  90. Stock K, Kumar J, Synowitz M, Petrosino S, Imperatore R, Smith ES et al. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat Med 2012; 18: 1232–1238.

    CAS  Google Scholar 

  91. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 2014; 20: 29–36.

    CAS  Google Scholar 

  92. van Lohuizen M, Frasch M, Wientjens E, Berns A . Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 1991; 353: 353–355.

    CAS  Google Scholar 

  93. Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M et al. Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 2001; 128: 1587–1597.

    CAS  Google Scholar 

  94. Cao R, Tsukada Y, Zhang Y . Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 2005; 20: 845–854.

    CAS  Google Scholar 

  95. Qian T, Lee JY, Park JH, Kim HJ, Kong G . Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex. Oncogene 2010; 29: 5818–5827.

    CAS  Google Scholar 

  96. Pemberton H, Anderton E, Patel H, Brookes S, Chandler H, Palermo R et al. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol 2014; 15: R23.

    Google Scholar 

  97. Lessard J, Baban S, Sauvageau G . Stage-specific expression of polycomb group genes in human bone marrow cells. Blood 1998; 91: 1216–1224.

    CAS  Google Scholar 

  98. Kajiume T, Ohno N, Sera Y, Kawahara Y, Yuge L, Kobayashi M . Reciprocal expression of Bmi1 and Mel-18 is associated with functioning of primitive hematopoietic cells. Exp Hematol 2009; 37: 857–66 e2.

    CAS  Google Scholar 

  99. Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 2010; 6: 279–286.

    CAS  Google Scholar 

  100. Stojic L, Jasencakova Z, Prezioso C, Stutzer A, Bodega B, Pasini D et al. Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics Chromatin 2011; 4: 16.

    CAS  Google Scholar 

  101. Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 2012; 10: 47–62.

    CAS  Google Scholar 

  102. Wang W, Lin T, Huang J, Hu W, Xu K, Liu J . Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features. Urol Oncol 2011; 29: 244–251.

    CAS  Google Scholar 

  103. Wang W, Yuasa T, Tsuchiya N, Ma Z, Maita S, Narita S et al. The novel tumor-suppressor Mel-18 in prostate cancer: its functional polymorphism, expression and clinical significance. Int J Cancer 2009; 125: 2836–2843.

    CAS  Google Scholar 

  104. Guo WJ, Zeng MS, Yadav A, Song LB, Guo BH, Band V et al. Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. Cancer Res 2007; 67: 5083–5089.

    CAS  Google Scholar 

  105. Riis ML, Luders T, Markert EK, Haakensen VD, Nesbakken AJ, Kristensen VN et al. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes. ISRN Oncol 2012; 2012: 450267.

    Google Scholar 

  106. Tao J, Liu YL, Zhang G, Ma YY, Cui BB, Yang YM . Expression and clinicopathological significance of Mel-18 mRNA in colorectal cancer. Tumour Biol 2014; 35: 9619–9625.

    CAS  Google Scholar 

  107. Zhang XW, Sheng YP, Li Q, Qin W, Lu YW, Cheng YF et al. BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer 2010; 9: 40.

    CAS  Google Scholar 

  108. Lu YW, Li J, Guo WJ . Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma. J Exp Clin Cancer Res 2010; 29: 143.

    Google Scholar 

  109. Tetsu O, Ishihara H, Kanno R, Kamiyasu M, Inoue H, Tokuhisa T et al. mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25. Immunity 1998; 9: 439–448.

    CAS  Google Scholar 

  110. Guo WJ, Datta S, Band V, Dimri GP . Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell 2007; 18: 536–546.

    CAS  Google Scholar 

  111. Kanno M, Hasegawa M, Ishida A, Isono K, Taniguchi M . mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J 1995; 14: 5672–5678.

    CAS  Google Scholar 

  112. Lee JY, Jang KS, Shin DH, Oh MY, Kim HJ, Kim Y et al. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 2008; 68: 4201–4209.

    CAS  Google Scholar 

  113. Guo BH, Zhang X, Zhang HZ, Lin HL, Feng Y, Shao JY et al. Low expression of Mel-18 predicts poor prognosis in patients with breast cancer. Ann Oncol 2010; 21: 2361–2369.

    Google Scholar 

  114. Lee JY, Park MK, Park JH, Lee HJ, Shin DH, Kang Y et al. Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene 2014; 33: 1325–1335.

    CAS  Google Scholar 

  115. Won HY, Lee JY, Shin DH, Park JH, Nam JS, Kim HC et al. Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J 2012; 26: 5002–5013.

    CAS  Google Scholar 

  116. Park JH, Lee JY, Shin DH, Jang KS, Kim HJ, Kong G . Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1alpha mediated by the PTEN/PI3K/Akt pathway. Oncogene 2011; 30: 4578–4589.

    CAS  Google Scholar 

  117. Akasaka T, Kanno M, Balling R, Mieza MA, Taniguchi M, Koseki H . A role for mel-18, a Polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton. Development 1996; 122: 1513–1522.

    CAS  Google Scholar 

  118. Miki J, Fujimura Y, Koseki H, Kamijo T . Polycomb complexes regulate cellular senescence by repression of ARF in cooperation with E2F3. Genes Cells 2007; 12: 1371–1382.

    CAS  Google Scholar 

  119. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    CAS  Google Scholar 

  120. Kranc KR, Bamforth SD, Braganca J, Norbury C, van Lohuizen M, Bhattacharya S . Transcriptional coactivator Cited2 induces Bmi1 and Mel18 and controls fibroblast proliferation via Ink4a/ARF. Mol Cell Biol 2003; 23: 7658–7666.

    CAS  Google Scholar 

  121. Maertens GN, El Messaoudi-Aubert S, Racek T, Stock JK, Nicholls J, Rodriguez-Niedenfuhr M et al. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS ONE 2009; 4: e6380.

    Google Scholar 

  122. Kaustov L, Ouyang H, Amaya M, Lemak A, Nady N, Duan S et al. Recognition and specificity determinants of the human cbx chromodomains. J Biol Chem 2011; 286: 521–529.

    CAS  Google Scholar 

  123. Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T et al. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 2005; 24: 5543–5551.

    CAS  Google Scholar 

  124. Gil J, Bernard D, Martinez D, Beach D . Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 2004; 6: 67–72.

    CAS  Google Scholar 

  125. Scott CL, Gil J, Hernando E, Teruya-Feldstein J, Narita M, Martinez D et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc Natl Acad Sci USA 2007; 104: 5389–5394.

    CAS  Google Scholar 

  126. Shinjo K, Yamashita Y, Yamamoto E, Akatsuka S, Uno N, Kamiya A et al. Expression of chromobox homolog 7 (CBX7) is associated with poor prognosis in ovarian clear cell adenocarcinoma via TRAIL-induced apoptotic pathway regulation. Int J Cancer 2014; 135: 308–318.

    CAS  Google Scholar 

  127. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38: 662–674.

    CAS  Google Scholar 

  128. Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D et al. Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro-oncol 2005; 7: 20–31.

    CAS  Google Scholar 

  129. Pallante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F et al. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res 2008; 68: 6770–6778.

    CAS  Google Scholar 

  130. Federico A, Pallante P, Bianco M, Ferraro A, Esposito F, Monti M et al. Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res 2009; 69: 7079–7087.

    CAS  Google Scholar 

  131. Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F et al. Identification of a new pathway for tumor progression: MicroRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes Cancer 2010; 1: 210–224.

    CAS  Google Scholar 

  132. Karamitopoulou E, Pallante P, Zlobec I, Tornillo L, Carafa V, Schaffner T et al. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer 2010; 46: 1438–1444.

    CAS  Google Scholar 

  133. Hinz S, Kempkensteffen C, Christoph F, Krause H, Schrader M, Schostak M et al. Expression parameters of the polycomb group proteins BMI1, SUZ12, RING1 and CBX7 in urothelial carcinoma of the bladder and their prognostic relevance. Tumour Biol 2008; 29: 323–329.

    CAS  Google Scholar 

  134. Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A et al. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer 2010; 46: 2304–2313.

    CAS  Google Scholar 

  135. Li G, Warden C, Zou Z, Neman J, Krueger JS, Jain A et al. Altered expression of polycomb group genes in glioblastoma multiforme. PLoS ONE 2013; 8: e80970.

    Google Scholar 

  136. Forzati F, Federico A, Pallante P, Abbate A, Esposito F, Malapelle U et al. CBX7 is a tumor suppressor in mice and humans. J Clin Invest 2012; 122: 612–623.

    CAS  Google Scholar 

  137. Pallante P, Sepe R, Federico A, Forzati F, Bianco M, Fusco A . CBX7 modulates the expression of genes critical for cancer progression. PLoS ONE 2014; 9: e98295.

    Google Scholar 

  138. Core N, Bel S, Gaunt SJ, Aurrand-Lions M, Pearce J, Fisher A et al. Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice. Development 1997; 124: 721–729.

    CAS  Google Scholar 

  139. Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y et al. Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 2012; 153: 913–924.

    CAS  Google Scholar 

  140. Katoh-Fukui Y, Owaki A, Toyama Y, Kusaka M, Shinohara Y, Maekawa M et al. Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression. Blood 2005; 106: 1612–1620.

    CAS  Google Scholar 

  141. Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K et al. Male-to-female sex reversal in M33 mutant mice. Nature 1998; 393: 688–692.

    CAS  Google Scholar 

  142. Core N, Joly F, Boned A, Djabali M . Disruption of E2F signaling suppresses the INK4a-induced proliferative defect in M33-deficient mice. Oncogene 2004; 23: 7660–7668.

    CAS  Google Scholar 

  143. Clermont PL, Sun L, Crea F, Thu KL, Zhang A, Parolia A et al. Genotranscriptomic meta-analysis of the Polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role. Br J Cancer 2014; 111: 1663–1672.

    CAS  Google Scholar 

  144. Parris TZ, Aziz L, Kovacs A, Hajizadeh S, Nemes S, Semaan M et al. Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma. BMC Cancer 2014; 14: 324.

    Google Scholar 

  145. Parris TZ, Kovacs A, Aziz L, Hajizadeh S, Nemes S, Semaan M et al. Additive effect of the AZGP1, PIP, S100A8 and UBE2C molecular biomarkers improves outcome prediction in breast carcinoma. Int J Cancer 2014; 134: 1617–1629.

    CAS  Google Scholar 

  146. Wang B, Tang J, Liao D, Wang G, Zhang M, Sang Y et al. Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma. Ann Surg Oncol 2013; 20: S684–S692.

    Google Scholar 

  147. Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z et al. Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell 2014; 25: 118–131.

    CAS  Google Scholar 

  148. Kagey MH, Melhuish TA, Wotton D . The polycomb protein Pc2 is a SUMO E3. Cell 2003; 113: 127–137.

    CAS  Google Scholar 

  149. Maethner E, Garcia-Cuellar MP, Breitinger C, Takacova S, Divoky V, Hess JL et al. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep 2013; 3: 1553–1566.

    CAS  Google Scholar 

  150. Lee SH, Um SJ, Kim EJ . CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett 2013; 335: 397–403.

    CAS  Google Scholar 

  151. Klauke K, Radulovic V, Broekhuis M, Weersing E, Zwart E, Olthof S et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 2013; 15: 353–362.

    CAS  Google Scholar 

  152. O'Loghlen A, Munoz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 2012; 10: 33–46.

    CAS  Google Scholar 

  153. Vandamme J, Volkel P, Rosnoblet C, Le Faou P, Angrand PO . Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells. Mol Cell Proteomics 2011; 10: M110.002642.

    Google Scholar 

  154. Gilbertson RJ . Mapping cancer origins. Cell 2011; 145: 25–29.

    CAS  Google Scholar 

  155. de Vries NA, Hulsman D, Akhtar W, de Jong J, Miles DC, Blom M et al. Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression. Cell Rep 2015; 10: 383–397.

    CAS  Google Scholar 

  156. De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 2014; 514: 247–251.

    CAS  Google Scholar 

  157. Guo BH, Feng Y, Zhang R, Xu LH, Li MZ, Kung HF et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer 2011; 10: 10.

    CAS  Google Scholar 

  158. Silva J, Garcia V, Garcia JM, Pena C, Dominguez G, Diaz R et al. Circulating Bmi-1 mRNA as a possible prognostic factor for advanced breast cancer patients. Breast Cancer Res 2007; 9: R55.

    Google Scholar 

  159. Tateishi K, Ohta M, Kanai F, Guleng B, Tanaka Y, Asaoka Y et al. Dysregulated expression of stem cell factor Bmi1 in precancerous lesions of the gastrointestinal tract. Clin Cancer Res 2006; 12: 6960–6966.

    CAS  Google Scholar 

  160. Li DW, Tang HM, Fan JW, Yan DW, Zhou CZ, Li SX et al. Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J Cancer Res Clin Oncol 2010; 136: 997–1006.

    CAS  Google Scholar 

  161. van Galen JC, Muris JJ, Oudejans JJ, Vos W, Giroth CP, Ossenkoppele GJ et al. Expression of the polycomb-group gene BMI1 is related to an unfavourable prognosis in primary nodal DLBCL. J Clin Pathol 2007; 60: 167–172.

    CAS  Google Scholar 

  162. Liu JH, Song LB, Zhang X, Guo BH, Feng Y, Li XX et al. Bmi-1 expression predicts prognosis for patients with gastric carcinoma. J Surg Oncol 2008; 97: 267–272.

    CAS  Google Scholar 

  163. Liu PW, Lin Y, Chen XY . Expression of B-cell-specific Moloney murine leukemia virus integration site 1 mRNA and protein in gastric cancer. J Dig Dis 2014; 15: 166–173.

    CAS  Google Scholar 

  164. Yang GF, He WP, Cai MY, He LR, Luo JH, Deng HX et al. Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma. BMC Cancer 2010; 10: 133.

    CAS  Google Scholar 

  165. Zhang F, Sui L, Xin T . Correlations of BMI-1 expression and telomerase activity in ovarian cancer tissues. Exp Oncol 2008; 30: 70–74.

    CAS  Google Scholar 

  166. Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C et al. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS ONE 2013; 8: e55820.

    CAS  Google Scholar 

  167. Song W, Tao K, Li H, Jin C, Song Z, Li J et al. Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci 2010; 101: 1754–1760.

    CAS  Google Scholar 

  168. Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A . Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia 2007; 21: 1116–1122.

    CAS  Google Scholar 

  169. Mihara K, Chowdhury M, Nakaju N, Hidani S, Ihara A, Hyodo H et al. Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 2006; 107: 305–308.

    CAS  Google Scholar 

  170. Xu F, Li X, Wu L, Zhang Q, Yang R, Yang Y et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol 2011; 90: 643–653.

    CAS  Google Scholar 

  171. Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky GV . Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 2006; 5: 1886–1901.

    CAS  Google Scholar 

  172. van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52: 455–463.

    CAS  Google Scholar 

  173. Mohty M, Yong AS, Szydlo RM, Apperley JF, Melo JV . The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood 2007; 110: 380–383.

    CAS  Google Scholar 

  174. Chen S, Chen J, Zhan Q, Zhu Y, Chen H, Deng X et al. H2AK119Ub1 and H3K27Me3 in molecular staging for survival prediction of patients with pancreatic ductal adenocarcinoma. Oncotarget 2014; 5: 10421–10433.

    Google Scholar 

  175. Wang W, Cheng J, Qin JJ, Voruganti S, Nag S, Fan J et al. RYBP expression is associated with better survival of patients with hepatocellular carcinoma (HCC) and responsiveness to chemotherapy of HCC cells in vitro and in vivo. Oncotarget 2014; 5: 11604–11619.

    Google Scholar 

  176. Oh EJ, Yang WI, Cheong JW, Choi SE, Yoon SO . Diffuse large B-cell lymphoma with histone H3 trimethylation at lysine 27: another poor prognostic phenotype independent of c-Myc/Bcl2 coexpression. Hum Pathol 2014; 45: 2043–2050.

    CAS  Google Scholar 

  177. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27: 1861–1869.

    CAS  Google Scholar 

  178. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268–273.

    CAS  Google Scholar 

  179. Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 2006; 12: 1168–1174.

    CAS  Google Scholar 

  180. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    CAS  Google Scholar 

  181. Benard A, Goossens-Beumer IJ, van Hoesel AQ, Horati H, Putter H, Zeestraten EC et al. Prognostic value of polycomb proteins EZH2, BMI1 and SUZ12 and histone modification H3K27me3 in colorectal cancer. PLoS ONE 2014; 9: e108265.

    Google Scholar 

  182. Takawa M, Masuda K, Kunizaki M, Daigo Y, Takagi K, Iwai Y et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 2011; 102: 1298–1305.

    CAS  Google Scholar 

  183. Wang CG, Ye YJ, Yuan J, Liu FF, Zhang H, Wang S . EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis. World J Gastroenterol 2010; 16: 2421–2427.

    Google Scholar 

  184. Ougolkov AV, Bilim VN, Billadeau DD . Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res 2008; 14: 6790–6796.

    CAS  Google Scholar 

  185. Behrens C, Solis LM, Lin H, Yuan P, Tang X, Kadara H et al. EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin Cancer Res 2013; 19: 6556–6565.

    CAS  Google Scholar 

  186. Wan L, Li X, Shen H, Bai X . Quantitative analysis of EZH2 expression and its correlations with lung cancer patients' clinical pathological characteristics. Clin Transl Oncol 2013; 15: 132–138.

    CAS  Google Scholar 

  187. Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL et al. EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut 2011; 60: 967–976.

    CAS  Google Scholar 

  188. Liu L, Xu Z, Zhong L, Wang H, Jiang S, Long Q et al. Prognostic value of EZH2 expression and activity in renal cell carcinoma: a prospective study. PLoS ONE 2013; 8: e81484.

    Google Scholar 

  189. Wagener N, Macher-Goeppinger S, Pritsch M, Husing J, Hoppe-Seyler K, Schirmacher P et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 2010; 10: 524.

    Google Scholar 

  190. Zingg D, Debbache J, Schaefer SM, Tuncer E, Frommel SC, Cheng P et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun 2015; 6: 6051.

    CAS  Google Scholar 

  191. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    CAS  Google Scholar 

  192. Crea F, Hurt EM, Farrar WL . Clinical significance of Polycomb gene expression in brain tumors. Mol Cancer 2010; 9: 265.

    Google Scholar 

  193. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 2014; 46: 1227–1232.

    CAS  Google Scholar 

  194. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124: 439–447.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D Miles and G Gargiulo for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M van Lohuizen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koppens, M., van Lohuizen, M. Context-dependent actions of Polycomb repressors in cancer. Oncogene 35, 1341–1352 (2016). https://doi.org/10.1038/onc.2015.195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.195

This article is cited by

Search

Quick links