Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming

Abstract

Mutations of Wnt/β-catenin signaling pathway has essential roles in development and cancer. Although β-catenin and adenomatous polyposis coli (APC) gene mutations are well established and are known to drive tumorigenesis, discoveries of mutations in other components of the pathway lagged, which hinders the understanding of cancer mechanisms. Here we report that δ-catenin (gene designation: CTNND2), a primarily neural member of the β-catenin superfamily that promotes canonical Wnt/β-catenin/LEF-1-mediated transcription, displays exonic mutations in human prostate cancer and promotes cancer cell survival adaptation and metabolic reprogramming. When overexpressed in cells derived from prostate tumor xenografts, δ-catenin gene invariably gives rise to mutations, leading to sequence disruptions predicting functional alterations. Ectopic δ-catenin gene integrating into host chromosomes is locus nonselective. δ-Catenin mutations promote tumor development in mouse prostate with probasin promoter (ARR2PB)-driven, prostate-specific expression of Myc oncogene, whereas mutant cells empower survival advantage upon overgrowth and glucose deprivation. Reprogramming energy utilization accompanies the downregulation of glucose transporter-1 and poly (ADP-ribose) polymerase cleavage while preserving tumor type 2 pyruvate kinase expression. δ-Catenin mutations increase β-catenin translocation to the nucleus and hypoxia-inducible factor 1α (HIF-1α) expression. Therefore, introducing δ-catenin mutations is an important milestone in prostate cancer metabolic adaptation by modulating β-catenin and HIF-1α signaling under glucose shortage to amplify its tumor-promoting potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  3. Paffenholz R, Franke WW . Identification and localization of a neurally expressed member of the plakoglobin/armadillo multigene family. Differentiation 1997; 61: 293–304.

    Article  CAS  Google Scholar 

  4. Zhou J, Liyanage U, Medina M, Ho C, Simmons AD, Lovett M et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 1997; 8: 2085–2090.

    Article  CAS  Google Scholar 

  5. Lu Q, Paredes M, Medina M, Zhou J, Cavallo R, Peifer M et al. δ-Catenin, an adhesive junction-associated protein which promotes cell scattering. J Cell Biol 1999; 144: 519–532.

    Article  CAS  Google Scholar 

  6. Burger MJ, Tebay MA, Keith PA, Samaratunga HM, Clements J, Lavin MF et al. Expression analysis of δ-catenin and prostate-specific membrane antigen: their potential as diagnostic markers for prostate cancer. Int J Cancer 2002; 100: 228–237.

    Article  CAS  Google Scholar 

  7. Lu Q, Dobbs LJ, Gregory CW, Lanford GW, Revelo MP, Shappell S et al. Increased expression of delta-catenin/neural plakophilin-related armadillo protein is associated with the down-regulation and redistribution of E-cadherin and p120ctn in human prostate cancer. Hum Pathol 2005; 36: 1037–1048.

    Article  CAS  Google Scholar 

  8. Fang Y, Li Z, Wang X, Zhang S . Expression and biological role of δ-catenin in human ovarian cancer. J Cancer Res Clin Oncol 2004; 138: 1769–1776.

    Article  Google Scholar 

  9. Zhang JY, Wang Y, Zhang D, Yang ZQ, Dong XJ, Jiang GY et al. δ-Catenin promotes malignant phenotype of non-small cell lung cancer by non-competitive binding to E-cadherin with p120ctn in cytoplasm. J Pathol 2010; 222: 76–88.

    Article  CAS  Google Scholar 

  10. Kim H, He Y, Yang I, Zeng Y, Kim Y, Seo YW et al. δ-Catenin promotes E-cadherin processing and activates β-catenin-mediated signaling: implications on human prostate cancer progression. Biochim Biophys Acta 2012; 1822: 509–521.

    Article  CAS  Google Scholar 

  11. Lu B, Jiang D, Wang P, Gao Y, Sun W, Xiao X et al. Replication study supports CTNND2 as a susceptibility gene for high myopia. Invest Ophthalmol Vis ScI 2011; 252: 8258–8261.

    Article  Google Scholar 

  12. Jun G, Moncaster JA, Koutras C, Seshadri S, Buros J, McKee AC et al. δ-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. PLoS ONE 2012; 7: e43728.

    Article  CAS  Google Scholar 

  13. Hirsch D, Kemmerling R, Davis S, Camps J, Meltzer PS, Ried T et al. Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res 2012; 73: 1454–1460.

    Article  Google Scholar 

  14. Zeng Y, Abdallah A, Lu JP, Wang T, Chen YH, Terrian DM et al. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles. Mol Cancer 2009; 8: 8–19.

    Article  CAS  Google Scholar 

  15. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 2005; 121: 837–848.

    Article  CAS  Google Scholar 

  16. Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 2009; 296: H470–H479.

    Article  CAS  Google Scholar 

  17. Rios-Doria J, Day KC, Kuefer R, Rashid MG, Chinnaiyan AM, Rubin MA et al. The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 2003; 278: 1372–1379.

    Article  CAS  Google Scholar 

  18. Davis MA, Ireton RC, Reynolds AB . A core function for p120-catenin in cadherin turnover. J Cell Biol 2003; 163: 525–534.

    Article  CAS  Google Scholar 

  19. Papadopoulos N, Kinzler KW, Vogelstein B . The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat Biotechnol 2006; 24: 985–995.

    Article  CAS  Google Scholar 

  20. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    Article  CAS  Google Scholar 

  21. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  Google Scholar 

  22. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009; 325: 1555–1559.

    Article  CAS  Google Scholar 

  23. Israely I, Costa RM, Xie CW, Silva AJ, Kosik KS, Liu X et al. Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Curr Biol 2004; 14: 1657–1663.

    Article  CAS  Google Scholar 

  24. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4: 223–238.

    Article  CAS  Google Scholar 

  25. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  Google Scholar 

  26. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  Google Scholar 

  27. Mathupala SP, Ko YH, Pedersen PL . Hexokinase II Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 2006; 25: 4777–4786.

    Article  CAS  Google Scholar 

  28. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 2007; 292: C125–C136.

    Article  CAS  Google Scholar 

  29. Lu Q . δ-Catenin dysregulation in cancer: interactions with E-cadherin and beyond. J Pathol 2010; 222: 119–123.

    Article  CAS  Google Scholar 

  30. Kouchi Z, Barthet G, Serban G, Georgakopoulos A, Shioi J, Robakis NK . P120 catenin recruits cadherins to gamma-secretase and inhibits production of Abeta peptide. J Biol Chem 2009; 284: 1954–1961.

    Article  CAS  Google Scholar 

  31. Kim JS, Bareiss S, Kim KK, Tatum R, Han JR, Jin YH et al. Presenilin-1 inhibits delta-catenin-induced cellular branching and promotes delta-catenin processing and turnover. Biochem Biophys Res Commun 2006; 351: 903–908.

    Article  CAS  Google Scholar 

  32. Bareiss S, Kim K, Lu Q . Delta-catenin/NPRAP: a new member of the glycogen synthase kinase-3beta signaling complex that promotes beta-catenin turnover in neurons. J Neurosci Res 2010; 88: 2350–2363.

    CAS  Google Scholar 

  33. Oh M, Kim H, Yang I, Park JH, Cong WT, Baek MC et al. GSK-3 phosphorylates delta-catenin and negatively regulates its stability via ubiquitination/proteosome-mediated proteolysis. J Biol Chem 2009; 284: 28579–28589.

    Article  CAS  Google Scholar 

  34. Dai SD, Wang Y, Zhang JY, Zhang D, Zhang PX, Jiang GY et al. Upregulation of δ-catenin is associated with poor prognosis and enhances transcriptional activity through Kaiso in non-small-cell lung cancer. Cancer Sci 2011; 102: 95–103.

    Article  CAS  Google Scholar 

  35. Kim SW, Park JI, Spring CM, Sater AK, Ji H, Otchere AA et al. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat Cell Biol 2004; 6: 1212–1220.

    Article  CAS  Google Scholar 

  36. Rodova M, Kelly KF, VanSaun M, Daniel JM, Werle MJ . Regulation of the rapsyn promoter by kaiso and delta-catenin. Mol Cell Biol 2004; 24: 7188–7196.

    Article  CAS  Google Scholar 

  37. Kim K, Sirota A, Chen Yh YH, Jones SB, Dudek R, Lanford GW et al. Dendrite-like process formation and cytoskeletal remodeling regulated by delta-catenin expression. Exp Cell Res 2002; 275: 171–184.

    Article  CAS  Google Scholar 

  38. Kim H, Han JR, Park J, Oh M, James SE, Chang S et al. Delta-catenin-induced dendritic morphogenesis. An essential role of p190RhoGEF interaction through Akt1-mediated phosphorylation. J Biol Chem 2008; 283: 977–987.

    Article  CAS  Google Scholar 

  39. Kim H, Oh M, Lu Q, Kim K . E-Cadherin negatively modulates delta-catenin-induced morphological changes and RhoA activity reduction by competing with p190RhoGEF for delta-catenin. Biochem Biophys Res Commun 2008; 377: 636–641.

    Article  CAS  Google Scholar 

  40. Zhang H, Dai SD, Zhang D, Liu D, Zhang FY, Zheng TY et al. Delta-catenin promotes the proliferation and invasion of colorectal cancer cells by binding to E-cadherin in a competitive manner with p120 catenin. Target Oncol (e-pub ahead of print 20 February 2013; doi:10.1007/s11523-013-0269-6).

    Article  CAS  Google Scholar 

  41. Wolf A, Keil R, Götzl O, Mun A, Schwarze K, Lederer M, Hüttelmaier S, Hatzfeld M . The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat Cell Biol 2006; 8: 1432–1440.

    Article  CAS  Google Scholar 

  42. Wang T, Chen YH, Hong H, Zeng Y, Zhang J, Lu JP et al. Increased nucleotide polymorphic changes in the 5′-untranslated region of delta-catenin (CTNND2) gene in prostate cancer. Oncogene 2009; 28: 555–564.

    Article  CAS  Google Scholar 

  43. Wilson KF, Erickson JW, Antonyak MA, Cerione RA . Rho GTPases and their roles in cancer metabolism. Trends Mol Med 2013; 19: 74–82.

    Article  CAS  Google Scholar 

  44. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–968.

    Article  CAS  Google Scholar 

  45. Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA et al. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122 (Part 22): 4049–4061.

    Article  CAS  Google Scholar 

  46. Martinez MC, Ochiishi T, Majewski M, Kosik KS . Dual regulation of neuronal morphogenesis by a delta-catenin-cortactin complex and Rho. J Cell Biol 2003; 162: 99–111.

    Article  CAS  Google Scholar 

  47. Deng W, Tsao SW, Lucas JN, Leung CS, Cheung AL . A new method for improving metaphase chromosome spreading. Cytometry A 2003; 51: 46–51.

    Article  Google Scholar 

  48. Huang X, Hu J, Hu X, Zhang C, Zhang L, Wang S et al. Cytogenetic characterization of the bay scallop, Argopecten irradians irradians, by multiple staining techniques and fluorescence in situ hybridization. Genes Genet Syst 2007; 82: 257–263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Joani Zary Oswald for technical assistance. This work was supported, in part, by DOD Grant PC040569 (to QL), NIH Grants CA111891 and CA165202 (to QL), ES016888 (to Y-HC) and DK073488 and DK074825 (to PDN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Lu.

Ethics declarations

Competing interests

JN, JZ, J-PL, DZ, JF, HH and CB declare no conflict of interest. QL, Y-HC and PDN are funded by the NIH.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nopparat, J., Zhang, J., Lu, JP. et al. δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming. Oncogene 34, 1542–1552 (2015). https://doi.org/10.1038/onc.2014.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.89

This article is cited by

Search

Quick links