Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intratumoral heterogeneity of ADAM23 promotes tumor growth and metastasis through LGI4 and nitric oxide signals

Abstract

Intratumoral heterogeneity (ITH) represents an obstacle for cancer diagnosis and treatment, but little is known about its functional role in cancer progression. The A Desintegrin And Metalloproteinase 23 (ADAM23) gene is epigenetically silenced in different types of tumors, and silencing is often associated with advanced disease and metastasis. Here, we show that invasive breast tumors exhibit significant ADAM23-ITH and that this heterogeneity is critical for tumor growth and metastasis. We demonstrate that while loss of ADAM23 expression enhances invasion, it causes a severe proliferative deficiency and is not itself sufficient to trigger metastasis. Rather, we observed that, in ADAM23-heterotypic environments, ADAM23-negative cells promote tumor growth and metastasis by enhancing the proliferation and invasion of adjacent A23-positive cells through the production of LGI4 (Leucine-rich Glioma Inactivated 4) and nitric oxide (NO). Ablation of LGI4 and NO in A23-negative cells significantly attenuates A23-positive cell proliferation and invasion. Our work denotes a driving role of ADAM23-ITH during disease progression, shifting the malignant phenotype from the cellular to the tissue level. Our findings also provide insights for therapeutic intervention, enforcing the need to ascertain ITH to improve cancer diagnosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cairns J . Mutation selection and the natural history of cancer. Nature 1975; 15: 197–200.

    Article  Google Scholar 

  2. Fidler IJ, Kripke ML . Metastasis results from preexisting variant cells within a malignant tumor. Science 1977; 197: 893–895.

    Article  CAS  PubMed  Google Scholar 

  3. Marusyk A, Almendro V, Polyak K . Intratumor heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012; 19: 323–334.

    Article  Google Scholar 

  4. Merlo LM, Pepper JW, Reid BJ, Maley CC . Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006; 6: 924–935.

    Article  CAS  PubMed  Google Scholar 

  5. Michor F, Polyak K . The origins and implications of intratumor heterogeneity. Cancer Prev Res 2010; 3: 1361–1364.

    Article  Google Scholar 

  6. Nowell PC . The conal evolution of tumor cell populations. Science 1976; 194: 23–28.

    Article  CAS  PubMed  Google Scholar 

  7. Swanton C . Intratumor heterogeneity: evolution through space and time. Cancer Res 2012; 72: 4875–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki N, Withers HR, Koehler MW . Heterogeneity and variability of artificial lung colony-forming ability among clones from mouse fibrosarcoma. Cancer Res 1978; 38: 3349–3351.

    CAS  PubMed  Google Scholar 

  9. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  PubMed  Google Scholar 

  10. Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate ETS gene rearrangements in prostate tissues. Oncogene 2008; 27: 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  11. Cottu PH, Asselah J, Lae M, Pierga JY, Diéras V, Mignot L et al. Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann Oncol 2008; 19: 595–597.

    Article  CAS  PubMed  Google Scholar 

  12. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 2012; 366: 883–892.

    Article  CAS  PubMed  Google Scholar 

  13. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 2006; 38: 468–473.

    Article  CAS  PubMed  Google Scholar 

  14. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al. Tumor evolution inferred by single-cell sequencing. Nature 2011; 7: 90–94.

    Article  Google Scholar 

  15. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA et al. Evolution of human BCR–ABL1 lymphoblastic leukemia initiating cells. Nature 2011; 469: 362–367.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi T, Habuchi T, Kakehi Y, Mitsumori K, Akao T, Terachi T et al. Clonal and chronological genetic analysis of multifocal cancers of the bladder and upper urinary tract. Cancer Res 1998; 15: 5835–5841.

    Google Scholar 

  17. Teixeira MR, Pandis N, Bardi G, Andersen JA, Heim S . Karyotypic comparisons of multiple tumorous and macroscopically normal surrounding tissue samples from patients with breast cancer. Cancer Res 1996; 56: 855–859.

    CAS  PubMed  Google Scholar 

  18. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yancovitz M, Litterman A, Yoon J, Ng E, Shapiro RL, Berman RS et al. Intra- and inter-tumor heterogeneity of BRAFV600E mutations in primary and metastatic melanoma. PLoS One 2012; 7: e29336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Almendro V, Marusyk A, Polyak K . Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol 2013; 24: 277–302.

    Article  Google Scholar 

  21. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24: 1731–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C . Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 2012; 28: 127ps10.

    Google Scholar 

  23. Axelrod R, Axelrod DE, Pienta KJ . Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 2006; 103: 13474–13479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blobel CP . ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 2005; 6: 32–34.

    Article  CAS  PubMed  Google Scholar 

  25. Costa FF, Colin C, Shinjo SM, Zanata SM, Marie SK, Sogayar MC et al. ADAM23 methylation and expression analysis in brain tumors. Neurosci Lett 2005; 380: 260–264.

    Article  CAS  PubMed  Google Scholar 

  26. Costa FF, Verbisck NV, Salim AC, Ierardi DF, Pires LC, Sasahara RM et al. Epigenetic silencing of the adhesion molecule ADAM23 is highly frequent in breast tumors. Oncogene 2004; 23: 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  27. Verbisck NV, Costa ET, Costa FF, Cavalher FP, Costa MD, Muras A et al. ADAM23 negatively modulates alpha(v)beta(3) integrin activation during metastasis. Cancer Res 2009; 69: 5546–5552.

    Article  CAS  PubMed  Google Scholar 

  28. Hagihara A, Miyamoto K, Furuta J, Hiraoka N, Wakazono K, Seki S et al. Identification of 27 5′-CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene 2004; 23: 8705–8710.

    Article  CAS  PubMed  Google Scholar 

  29. Takada H, Imoto I, Tsuda H, Nakanishi Y, Ichikura T, Mochizuki H et al. ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation. Oncogene 2005; 24: 8051–8060.

    Article  CAS  PubMed  Google Scholar 

  30. Calmon MF, Colombo J, Carvalho F, Souza FP, Filho JF, Fukuyama EE, et al. Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer. Cancer Genet Cytogenet 2007; 173: 31–37.

    Article  CAS  PubMed  Google Scholar 

  31. Choi JS, Kim KH, Jeon YK, Kim SH, Jang SG, Ku JL et al. Promoter hypermethylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int J Cancer 2009; 124: 1258–1262.

    Article  CAS  PubMed  Google Scholar 

  32. Hu C, Lv H, Pan G, Cao H, Deng Z, Hu C et al. The expression of ADAM23 and its correlation with promoter methylation in non-small-cell lung carcinoma. Int J Exp Pathol 2011; 92: 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamada KM, Cukierman E . Modeling tissue morphogenesis and cancer in 3D. Cell 2007; 130: 601–610.

    Article  CAS  PubMed  Google Scholar 

  34. Senechal KR, Thaller C, Noebels JL . ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum Mol Genet 2005; 14: 1613–1620.

    Article  CAS  PubMed  Google Scholar 

  35. Nishino J, Saunders TL, Sagane K, Morrison SJ . LGI4 promotes the proliferation and differentiation of glial lineage cells throughout the developingperipheral nervous system. J Neurosci 2010; 45: 15228–15240.

    Article  Google Scholar 

  36. Sagane K, Ishihama Y, Sugimoto H . LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11. Int J Biol Sci 2008; 4: 387–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ozkaynak E, Abello G, Jaegle M, van Berge L, Hamer D, Kegel L et al. Adam22 is a major neuronal receptor for LGI4-mediated Schwann cell signaling. J Neurosci 2010; 30: 3857–38564.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Garthwaite J, Boulton CL . Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995; 57: 683–706.

    Article  CAS  PubMed  Google Scholar 

  39. Gauthier N, Lohm S, Touzery C, Chantôme A, Perette B, Reveneau S et al. Tumor-derived and host-derived nitric oxide differentially regulate breast carcinoma metastasis to the lungs. Carcinogenesis 2004; 25: 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  40. Jadeski LC, Hum KO, Chakraborty C, Lala PK . Nitric oxide promotes murine mammary tumor growth and metastasis by stimulating tumor cell migration, invasiveness and angiogenesis. Int J Cancer 2000; 86: 30–39.

    Article  CAS  PubMed  Google Scholar 

  41. Orucevic A, Bechberger J, Green AM, Shapiro RA, Billiar TR, Lala PK . Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int J Cancer 1999; 81: 889–896.

    Article  CAS  PubMed  Google Scholar 

  42. Bermingham JR, Shearin H, Pennington J, O'Moore J, Jaegle M, Driegen S et al. The claw paw mutation reveals a role for LGI4 in peripheral nerve development. Nat Neurosci 2006; 9: 76–84.

    Article  CAS  PubMed  Google Scholar 

  43. Kim HA, Park WJ, Jeong HS, Lee HE, Lee SH, Kwon NS et al. Leucine-rich glioma inactivated 3 regulates adipogenesis through ADAM23. Biochim Biophys Acta 2012; 6: 914–922.

    Article  Google Scholar 

  44. Lampson BL, Kendall SD, Ancrile BB, Morrison MM, Shealy MJ, Barrientos KS et al. Targeting eNOS in pancreatic cancer. Cancer Res 2012; 72: 4472–4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sens-Abuázar C, Napolitano E, Ferreira E, Osório CA, Krepischi AC, Ricca TI et al. Down-regulation of ANAPC13 and CLTCL1: early events in the progression of preinvasive ductal carcinoma of the breast. Transl Oncol 2012; 5: 113–123.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pfaffl MW . A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cal S, Freije JMP, López JM, Takada Y, López-Otín C . ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the αvβ3 integrin through an RGD-independent mechanism. Mol Biol Cell 2000; 11: 1457–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Price JE, Polyzos A, Zhang RD, Daniels LM . Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 1990; 50: 717–721.

    CAS  PubMed  Google Scholar 

  49. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 1998; 70: 2446–2453.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Andrew Simpson and Dr Raphael Parmigiani for critical reading of this manuscript and to Dr Rodrigo Perez, Dr Alicia Kowaltowski, Dr Beatriz Geronymo, Dr Camila Machado, Dr Vilma Martins, Dr Tiago dos Santos and Dr Anibal Vercesi for scientific discussions and technical assistance. This work was supported by grants from FAPESP (06/60219-2, 07/51194-9, 07/52920-5, 11/50541-2) and LICR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Camargo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, E., Barnabé, G., Li, M. et al. Intratumoral heterogeneity of ADAM23 promotes tumor growth and metastasis through LGI4 and nitric oxide signals. Oncogene 34, 1270–1279 (2015). https://doi.org/10.1038/onc.2014.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.70

Search

Quick links