Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The tumor microenvironment shapes hallmarks of mature B-cell malignancies

Abstract

B-cell tumorigenesis results from a host of known and unknown genetic anomalies, including non-random translocations of genes that normally function as determinants of cell proliferation or cell survival to regions juxtaposed to active immunoglobulin heavy chain enhancer elements, chromosomal aneuploidy, somatic mutations that further affect oncogenic signaling and loss of heterozygosity of tumor-suppressor genes. However, it is critical to recognize that even in the setting of a genetic disease, the B-cell/plasma cell tumor microenvironment (TME) contributes significantly to malignant transformation and pathogenesis. Over a decade ago, we proposed the concept of cell adhesion-mediated drug resistance to delineate a form of TME-mediated drug resistance that protects hematopoietic tumor cells from the initial effect of diverse therapies. In the interim, it has been increasingly appreciated that TME also contributes to tumor initiation and progression through sustained growth/proliferation, self-renewal capacity, immune evasion, migration and invasion as well as resistance to cell death in a host of B-cell malignancies, including mantle cell lymphoma, diffuse large B-cell lymphoma, Waldenstroms macroglobulinemia, chronic lymphocytic leukemia and multiple myeloma. Within this review, we propose that TME and the tumor co-evolve as a consequence of bidirectional signaling networks. As such, TME represents an important target and should be considered integral to tumor progression and drug response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Seifert M, Scholtysik R, Kuppers R . Origin and pathogenesis of B cell lymphomas. Methods Mol Biol 2013; 971: 1–25.

    CAS  PubMed  Google Scholar 

  2. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  3. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS . Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000; 19: 4319–4327.

    CAS  PubMed  Google Scholar 

  4. Shain KH, Tao J . The B-cell receptor orchestrates environment-mediated lymphoma survival and drug resistance in B-cell malignancies. Oncogene 2013; 33: 4107–4113.

    PubMed  PubMed Central  Google Scholar 

  5. McMillin DW, Negri JM, Mitsiades CS . The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 2013; 12: 217–228.

    CAS  PubMed  Google Scholar 

  6. Byrd JC, Jones JJ, Woyach JA, Johnson AJ, Flynn JM . Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician. J Clin Oncol. 2014; 32: 3039–3047.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Meads MB, Gatenby RA, Dalton WS . Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev 2009; 9: 665–674.

    CAS  Google Scholar 

  8. Kuppers R . Prognosis in follicular lymphoma—it's in the microenvironment. N Engl J Med 2004; 351: 2152–2153.

    PubMed  Google Scholar 

  9. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S et al. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 2010; 16: 483–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Klein U, Dalla-Favera R . Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008; 8: 22–33.

    CAS  PubMed  Google Scholar 

  12. Young RM, Staudt LM . Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013; 12: 229–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  15. Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, Burkhardt B et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet 2012; 44: 1316–1320.

    CAS  PubMed  Google Scholar 

  16. Polyak K, Haviv I, Campbell IG . Co-evolution of tumor cells and their microenvironment. Trends Genet 2009; 25: 30–38.

    CAS  PubMed  Google Scholar 

  17. Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of endothelial to mesenchymal transition-like features. Blood 2012; 119: 5782–5794.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  19. Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247: 1457–1461.

    CAS  PubMed  Google Scholar 

  20. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    CAS  PubMed  Google Scholar 

  21. Ghobrial J, Ghobrial IM, Mitsiades C, Leleu X, Hatjiharissi E, Moreau AS et al. Novel therapeutic avenues in myeloma: changing the treatment paradigm. Oncology (Williston Park, NY) 2007; 21: 785–792, discussion 798–800.

    Google Scholar 

  22. de la Fuente MT, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A . Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 1999; 13: 266–274.

    CAS  PubMed  Google Scholar 

  23. Lin J, Lwin T, Zhao JJ, Tam W, Choi YS, Moscinski LC et al. Follicular dendritic cell-induced microRNA-mediated upregulation of PRDM1 and downregulation of BCL-6 in non-Hodgkin’s B-cell lymphomas. Leukemia 2011; 25: 145–152.

    CAS  PubMed  Google Scholar 

  24. Lwin T, Hazlehurst LA, Li Z, Dessureault S, Sotomayor E, Moscinski LC et al. Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-kappaB (RelB/p52) in non-Hodgkin’s lymphoma cells. Leukemia 2007; 21: 1521–1531.

    CAS  PubMed  Google Scholar 

  25. Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA et al. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009; 69: 1009–1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Haart SJ, van de Donk NW, Minnema MC, Huang JH, Aarts-Riemens T, Bovenschen N et al. Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance. Clin Cancer Res 2013; 19: 5591–5601.

    CAS  PubMed  Google Scholar 

  27. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114: 1029–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3 '-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H et al. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 2010; 116: 1460–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Herman SEM, Farooqui M, Bezabhie R, Aue G, Wiestner A . In vivo effects of ibrutinib on BCR signaling, tumor cell activation and proliferation in blood and tissue-resident cells of chronic lymphocytic leukemia patients. ASH Annu Meeting Abstr 2012; 120: 185.

    Google Scholar 

  32. Dasmahapatra G, Patel H, Dent P, Fisher RI, Friedberg J, Grant S . The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br J Haematol 2013; 161: 43–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones JA, Byrd JC . How will B-cell receptor targeted therapies change future CLL therapy? Blood 2014; 123: 1455–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG et al. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematology/oncology clinics of North America 2007; 21: 1007–1034 vii–viii.

    PubMed  Google Scholar 

  35. Lwin T, Zhao X, Cheng F, Zhang X, Huang A, Shah B et al. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas. J Clin Invest 2013; 123: 4612–4626.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Do RK, Hatada E, Lee H, Tourigny MR, Hilbert D, Chen-Kiang S . Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med 2000; 192: 953–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lwin T, Crespo LA, Wu A, Dessureault S, Shu HB, Moscinski LC et al. Lymphoma cell adhesion-induced expression of B cell-activating factor of the TNF family in bone marrow stromal cells protects non-Hodgkin's B lymphoma cells from apoptosis. Leukemia 2009; 23: 170–177.

    Article  CAS  PubMed  Google Scholar 

  38. Medina DJ, Goodell L, Glod J, Gelinas C, Rabson AB, Strair RK . Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor kappaB pathways. Haematologica 2012; 97: 1255–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J . Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol 1995; 162: 248–255.

    CAS  PubMed  Google Scholar 

  40. Gilbert LA, Hemann MT . Context-specific roles for paracrine IL-6 in lymphomagenesis. Genes Dev 2012; 26: 1758–1768.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang L, Yang J, Qian J, Li H, Romaguera JE, Kwak LW et al. Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells. Blood 2012; 120: 3783–3792.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Chen W, Ren J, Yu WH, Li Q, Yoshida K et al. DF3/MUC1 signaling in multiple myeloma cells is regulated by interleukin-7. Cancer Biol Ther 2003; 2: 187–193.

    PubMed  Google Scholar 

  43. Kimlinger T, Kline M, Kumar S, Lust J, Witzig T, Rajkumar SV . Differential expression of vascular endothelial growth factors and their receptors in multiple myeloma. Haematologica 2006; 91: 1033–1040.

    CAS  PubMed  Google Scholar 

  44. Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G . Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003; 17: 203–210.

    CAS  PubMed  Google Scholar 

  45. Jundt F, Probsting KS, Anagnostopoulos I, Muehlinghaus G, Chatterjee M, Mathas S et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 2004; 103: 3511–3515.

    CAS  PubMed  Google Scholar 

  46. Hodge LS, Ziesmer SC, Yang ZZ, Secreto FJ, Gertz MA, Novak AJ et al. IL-21 in the bone marrow microenvironment contributes to IgM secretion and proliferation of malignant cells in Waldenstrom macroglobulinemia. Blood 2012; 120: 3774–3782.

    CAS  PubMed  Google Scholar 

  47. Sacedon R, Diez B, Nunez V, Hernandez-Lopez C, Gutierrez-Frias C, Cejalvo T et al. Sonic hedgehog is produced by follicular dendritic cells and protects germinal center B cells from apoptosis. J Immunol 2005; 174: 1456–1461.

    CAS  PubMed  Google Scholar 

  48. Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007; 13: 944–951.

    CAS  PubMed  Google Scholar 

  49. Blotta S, Jakubikova J, Calimeri T, Roccaro AM, Amodio N, Azab AK et al. Canonical and noncanonical Hedgehog pathway in the pathogenesis of multiple myeloma. Blood 2012; 120: 5002–5013.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009; 16: 309–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 2012; 22: 506–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tao J, Zhao X, Tao J . c-MYC-miRNA circuitry: a central regulator of aggressive B-cell malignancies. Cell Cycle 2014; 13: 191–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K . STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010; 39: 493–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu L, Mohamed AJ, Simonson OE, Vargas L, Blomberg KE, Bjorkstrand B et al. Proteasome-dependent autoregulation of Bruton tyrosine kinase (Btk) promoter via NF-kappaB. Blood 2008; 111: 4617–4626.

    CAS  PubMed  Google Scholar 

  56. Teicher BA, Fricker SP . CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010; 16: 2927–2931.

    CAS  PubMed  Google Scholar 

  57. Burger JA, Kipps TJ . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    CAS  PubMed  Google Scholar 

  58. Woyach JA, Johnson AJ, Byrd JC . The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood 2012; 120: 1175–1184.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ngo HT, Leleu X, Lee J, Jia X, Melhem M, Runnels J et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 2008; 112: 150–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Arana E, Harwood NE, Batista FD . Regulation of integrin activation through the B-cell receptor. J Cell Sci 2008; 121: 2279–2286.

    CAS  PubMed  Google Scholar 

  61. Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholome K, Burger M et al. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res 2009; 69: 5424–5432.

    CAS  PubMed  Google Scholar 

  62. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013; 31: 88–94.

    CAS  PubMed  Google Scholar 

  64. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011; 117: 591–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stein R, Gupta P, Chen X, Cardillo TM, Furman RR, Chen S et al. Therapy of B-cell malignancies by anti-HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyperactivation of ERK and JNK MAP kinase signaling pathways. Blood 2010; 115: 5180–5190.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y et al. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int 2004; 54: 285–294.

    CAS  PubMed  Google Scholar 

  67. Koster A, Raemaekers JM . Angiogenesis in malignant lymphoma. Curr Opin Oncol 2005; 17: 611–616.

    PubMed  Google Scholar 

  68. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003; 17: 2025–2031.

    CAS  PubMed  Google Scholar 

  69. Rajkumar SV, Gertz MA, Lacy MQ, Dispenzieri A, Fonseca R, Geyer SM et al. Thalidomide as initial therapy for early-stage myeloma. Leukemia 2003; 17: 775–779.

    CAS  PubMed  Google Scholar 

  70. Fan F, Schimming A, Jaeger D, Podar K . Targeting the tumor microenvironment: focus on angiogenesis. J Oncol 2012; 2012: 281261.

    PubMed  Google Scholar 

  71. Cacciatore M, Guarnotta C, Calvaruso M, Sangaletti S, Florena AM, Franco V et al. Microenvironment-centred dynamics in aggressive B-cell lymphomas. Adv Hematol 2012; 2012: 138079.

    PubMed  PubMed Central  Google Scholar 

  72. Podar K, Anderson KC . Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle 2007; 6: 538–542.

    CAS  PubMed  Google Scholar 

  73. Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O'Quinn EC, Patil CA et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res 2011; 26: 1252–1260.

    CAS  PubMed  Google Scholar 

  74. Ruan J, Luo M, Wang C, Fan L, Yang SN, Cardenas M et al. Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes. Blood 2013; 121: 5192–5202.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mourcin F, Pangault C, Amin-Ali R, Ame-Thomas P, Tarte K . Stromal cell contribution to human follicular lymphoma pathogenesis. Front Immunol 2012; 3: 280.

    PubMed  PubMed Central  Google Scholar 

  76. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Noonan K, Borrello I . The immune microenvironment of myeloma. Cancer Microenviron 2011; 4: 313–323.

    PubMed  PubMed Central  Google Scholar 

  78. Glas AM, Kersten MJ, Delahaye LJ, Witteveen AT, Kibbelaar RE, Velds A et al. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 2005; 105: 301–307.

    CAS  PubMed  Google Scholar 

  79. Kiaii S, Clear AJ, Ramsay AG, Davies D, Sangaralingam A, Lee A et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol 2013; 31: 2654–2661.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    CAS  PubMed  Google Scholar 

  81. Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, Levy R . Follicular lymphoma B cells induce the conversion of conventional CD4+ T cells to T-regulatory cells. Int J Cancer 2009; 124: 239–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bluestone JA, Abbas AK . Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003; 3: 253–257.

    CAS  PubMed  Google Scholar 

  83. de Jong D, Enblad G . Inflammatory cells and immune microenvironment in malignant lymphoma. J Intern Med 2008; 264: 528–536.

    CAS  PubMed  Google Scholar 

  84. Herreros B, Sanchez-Aguilera A, Piris MA . Lymphoma microenvironment: culprit or innocent? Leukemia 2008; 22: 49–58.

    CAS  PubMed  Google Scholar 

  85. Mueller CG, Boix C, Kwan WH, Daussy C, Fournier E, Fridman WH et al. Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation. J Leuk Biol 2007; 82: 567–575.

    CAS  Google Scholar 

  86. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 2013; 190: 3815–3823.

    CAS  PubMed  Google Scholar 

  88. Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013; 121: 2975–2987.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.

    CAS  PubMed  Google Scholar 

  90. Boucher K, Parquet N, Widen R, Shain K, Baz R, Alsina M et al. Stemness of B-cell progenitors in multiple myeloma bone marrow. Clin Cancer Res 2012; 18: 6155–6168.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pilarski LM, Belch AR . Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34 (+) hematopoietic progenitors. Clin Cancer Res 2002; 8: 3198–3204.

    PubMed  Google Scholar 

  92. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  94. Borovski T, De Sousa EMF, Vermeulen L, Medema JP . Cancer stem cell niche: the place to be. Cancer Res 2011; 71: 634–639.

    CAS  PubMed  Google Scholar 

  95. Rappa G, Mercapide J, Anzanello F, Prasmickaite L, Xi Y, Ju J et al. Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets. Exp Cell Res 2008; 314: 2110–2122.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18: 2747–2763.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu D, Zheng C, Bergenbrant S, Holm G, Bjorkholm M, Yi Q et al. Telomerase activity in plasma cell dyscrasias. Br J Cancer 2001; 84: 621–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shammas MA, Shmookler Reis RJ, Li C, Koley H, Hurley LH, Anderson KC et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 2004; 10: 770–776.

    CAS  PubMed  Google Scholar 

  99. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144 (5): 646–674.

    CAS  PubMed  Google Scholar 

  100. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113: 4341–4351.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu Y, Gale M, Shields J, Garron C, Swistak M, Nguyen TH et al. Enhancement of the anti-tumor activity of therapeutic monoclonal antibodies by CXCR4 antagonists. Leuk Lymphoma 2012; 53: 130–138.

    CAS  PubMed  Google Scholar 

  102. O'Callaghan K, Lee L, Nguyen N, Hsieh MY, Kaneider NC, Klein AK et al. Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. Blood 2012; 119: 1717–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mraz M, Zent CS, Church AK, Jelinek DF, Wu X, Pospisilova S et al. Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin alpha-4-beta-1 (VLA-4) with natalizumab can overcome this resistance. Br J Haematol 2011; 155: 53–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Emmons MF, Gebhard AW, Nair RR, Baz R, McLaughlin ML, Cress AE et al. Acquisition of resistance toward HYD1 correlates with a reduction in cleaved alpha4 integrin expression and a compromised CAM-DR phenotype. Mol Cancer Ther 2011; 10: 2257–2266.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wobus M, Benath G, Ferrer RA, Wehner R, Schmitz M, Hofbauer LC et al. Impact of lenalidomide on the functional properties of human mesenchymal stromal cells. Exp Hematol 2012; 40: 867–876.

    CAS  PubMed  Google Scholar 

  106. Troeger A, Johnson AJ, Wood J, Blum WG, Andritsos LA, Byrd JC et al. RhoH is critical for cell-microenvironment interactions in chronic lymphocytic leukemia in mice and humans. Blood 2012; 119: 4708–4718.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012; 120: 1877–1887.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hoellenriegel J, Coffey GP, Sinha U, Pandey A, Sivina M, Ferrajoli A et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia 2012; 26: 1576–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vij R, Chang BY, Berdeja JG, Huff CA, Lendvai N, Tai YT et al. Early changes in cytokines, chemokines and indices of bone metabolism in a phase 2 study of the bruton tyrosine kinase (Btk) inhibitor, ibrutinib (PCI-32765) in patients with relapsed or relapsed/refractory multiple myeloma (MM). ASH Annu Meeting Abstr 2012; 120: 4039.

    Google Scholar 

  110. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Byrd JC, O'Brien S, James DF . Ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 1278–1279.

    CAS  PubMed  Google Scholar 

  112. Burger JA . Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012; 24: 643–649.

    CAS  PubMed  Google Scholar 

  113. Hirsch E, Ciraolo E, Franco I, Ghigo A, Martini M . PI3K in cancer-stroma interactions: bad in seed and ugly in soil. Oncogene 2013; 33: 3083–3090.

    PubMed  Google Scholar 

  114. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014; 123: 3390–3397.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 2014; 123: 3406–3413.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370: 1008–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood 2014; 123: 3398–3405.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18: 1359–1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ostman A . The tumor microenvironment controls drug sensitivity. Nat Med 2012; 18: 1332–1334.

    PubMed  Google Scholar 

  120. Lutzny G, Kocher T, Schmidt-Supprian M, Rudelius M, Klein-Hitpass L, Finch AJ et al. Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 2013; 23: 77–92.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Health Bankhead-Coley Team Science Program grant (2BT03), the US Army Medical Research and Materiel Command under Award W81XWH-08-2-0101 for a National Functional Genomics Center, the National Cancer Institute under Award (P30-CA076292), National Cancer Institutes (R01CA137123), Lymphoma Research Foundation, Maher Fund and the Moffitt Cancer Center Foundation.

Author Contributions

All the authors preformed the literature review, wrote and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K H Shain or J Tao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shain, K., Dalton, W. & Tao, J. The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene 34, 4673–4682 (2015). https://doi.org/10.1038/onc.2014.403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.403

This article is cited by

Search

Quick links