Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The activation loop tyrosine 823 is essential for the transforming capacity of the c-Kit oncogenic mutant D816V

Abstract

Oncogenic c-Kit mutations have been shown to display ligand-independent receptor activation and cell proliferation. A substitution of aspartate to valine at amino acid 816 (D816V) is one of the most commonly found oncogenic c-Kit mutations and is found in >90% of cases of mastocytosis and less commonly in germ-cell tumors, core-binding factor acute myeloid leukemia and mucosal melanomas. The mechanisms by which this mutation leads to constitutive activation and transformation are not fully understood. Previous studies have shown that the D816V mutation causes a structural change in the activation loop (A-loop), resulting in weaker binding of the A-loop to the juxtamembrane domain. In this paper, we have investigated the role of Y823, the only tyrosine residue in the A-loop, and its role in oncogenic transformation by c-Kit/D816V by introducing the Y823F mutation. Although dispensable for the kinase activity of c-Kit/D816V, the presence of Y823 was crucial for cell proliferation and survival. Furthermore, mutation of Y823 selectively downregulates the Ras/Erk and Akt pathways as well as the phosphorylation of STAT5 and reduces the transforming capacity of the D816V/c-Kit in vitro. We further show that mice injected with cells expressing c-Kit/D816V/Y823F display significantly reduced tumor size as well as tumor weight compared with controls. Finally, microarray analysis, comparing Y823F/D816V cells with cells expressing c-Kit/D816V, demonstrate that mutation of Y823 causes upregulation of proapoptotic genes, whereas genes of survival pathways are downregulated. Thus, phosphorylation of Y823 is not necessary for kinase activation, but essential for the transforming ability of the c-Kit/D816V mutant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ashman LK . The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 1999; 31: 1037–1051.

    Article  CAS  PubMed  Google Scholar 

  2. Heinrich MC, Rubin BP, Longley BJ, Fletcher JA . Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol 2002; 33: 484–495.

    Article  CAS  PubMed  Google Scholar 

  3. Laine E, Auclair C, Tchertanov L . Allosteric communication across the native and mutated KIT receptor tyrosine kinase. PLoS Comput Biol 2012; 8: e1002661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D et al. KIT mutations are common in testicular seminomas. Am J Pathol 2004; 164: 305–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 2004; 89: 920–925.

    CAS  PubMed  Google Scholar 

  6. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006; 107: 3463–3468.

    Article  CAS  PubMed  Google Scholar 

  7. Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA . Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 1999; 154: 1643–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Looijenga LH, de Leeuw H, van Oorschot M, van Gurp RJ, Stoop H, Gillis AJ et al. Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res 2003; 63: 7674–7678.

    CAS  PubMed  Google Scholar 

  9. Longley BJ Jr, Metcalfe DD, Tharp M, Wang X, Tyrrell L, Lu SZ et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci USA 1999; 96: 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piao X, Bernstein A . A point mutation in the catalytic domain of c-kit induces growth factor independence, tumorigenicity, and differentiation of mast cells. Blood 1996; 87: 3117–3123.

    CAS  PubMed  Google Scholar 

  11. Chian R, Young S, Danilkovitch-Miagkova A, Rönnstrand L, Leonard E, Ferrao P et al. Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood 2001; 98: 1365–1373.

    Article  CAS  PubMed  Google Scholar 

  12. Ning ZQ, Li J, Arceci RJ . Activating mutations of c-kit at codon 816 confer drug resistance in human leukemia cells. Leuk Lymphoma 2001; 41: 513–522.

    Article  CAS  PubMed  Google Scholar 

  13. Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 2006; 66: 473–481.

    Article  CAS  PubMed  Google Scholar 

  14. Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C . Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006; 108: 286–291.

    Article  CAS  PubMed  Google Scholar 

  15. Kosmider O, Denis N, Dubreuil P, Moreau-Gachelin F . Semaxinib (SU5416) as a therapeutic agent targeting oncogenic Kit mutants resistant to imatinib mesylate. Oncogene 2007; 26: 3904–3908.

    Article  CAS  PubMed  Google Scholar 

  16. Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Böhm A et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 2006; 107: 752–759.

    Article  CAS  PubMed  Google Scholar 

  17. Aichberger KJ, Gleixner KV, Mirkina I, Cerny-Reiterer S, Peter B, Ferenc V et al. Identification of proapoptotic Bim as a tumor suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs. Blood 2009; 114: 5342–5351.

    Article  CAS  PubMed  Google Scholar 

  18. Orfao A, Garcia-Montero AC, Sanchez L, Escribano L, REMA. Recent advances in the understanding of mastocytosis: the role of KIT mutations. Br J Haematol 2007; 138: 12–30.

    Article  CAS  PubMed  Google Scholar 

  19. Foster R, Griffith R, Ferrao P, Ashman L . Molecular basis of the constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor tyrosine kinase. J Mol Graph Model 2004; 23: 139–152.

    Article  CAS  PubMed  Google Scholar 

  20. DiNitto JP, Deshmukh GD, Zhang Y, Jacques SL, Coli R, Worrall JW et al. Function of activation loop tyrosine phosphorylation in the mechanism of c-Kit auto-activation and its implication in sunitinib resistance. J Biochem 2010; 147: 601–609.

    Article  CAS  PubMed  Google Scholar 

  21. Agarwal S, Kazi JU, Rönnstrand L . Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. J Biol Chem 2013; 288: 22460–22468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitayama H, Kanakura Y, Furitsu T, Tsujimura T, Oritani K, Ikeda H et al. Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines. Blood 1995; 85: 790–798.

    CAS  PubMed  Google Scholar 

  23. Bougherara H, Georgin-Lavialle S, Damaj G, Launay JM, Lhermitte L, Auclair C et al. Relocalization of KIT D816V to cell surface after dasatinib treatment: potential clinical implications. Clin Lymphoma Myeloma Leuk 2013; 13: 62–69.

    Article  CAS  PubMed  Google Scholar 

  24. Masson K, Rönnstrand L . Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21: 1717–1726.

    Article  CAS  PubMed  Google Scholar 

  25. Sun J, Pedersen M, Rönnstrand L . The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J Biol Chem 2009; 284: 11039–11047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schindler C, Levy DE, Decker T . JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007; 282: 20059–20063.

    Article  CAS  PubMed  Google Scholar 

  27. Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P . Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2011; 286: 5956–5966.

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues GA, Park M . Oncogenic activation of tyrosine kinases. Curr Opin Genet Dev 1994; 4: 15–24.

    Article  CAS  PubMed  Google Scholar 

  29. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993; 92: 1736–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaix A, Arcangeli ML, Lopez S, Voisset E, Yang Y, Vita M et al. KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570. Oncogene 2013.

  31. Serve H, Yee NS, Stella G, Sepp-Lorenzino L, Tan JC, Besmer P . Differential roles of PI3-kinase and Kit tyrosine 821 in Kit receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J 1995; 14: 473–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boerner JL, Demory ML, Silva C, Parsons SJ . Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 2004; 24: 7059–7071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boerner JL, Biscardi JS, Silva CM, Parsons SJ . Transactivating agonists of the EGF receptor require Tyr 845 phosphorylation for induction of DNA synthesis. Mol Carcinog 2005; 44: 262–273.

    Article  CAS  PubMed  Google Scholar 

  34. Wardega P, Heldin CH, Lennartsson J . Mutation of tyrosine residue 857 in the PDGF beta-receptor affects cell proliferation but not migration. Cell Signal 2010; 22: 1363–1368.

    Article  CAS  PubMed  Google Scholar 

  35. Hegazy SA, Wang P, Anand M, Ingham RJ, Gelebart P, Lai R . The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions. J Biol Chem 2010; 285: 19813–19820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong LQ, Farris S, Christal J, Liu F . Site-directed mutagenesis and yeast two-hybrid studies of the insulin and insulin-like growth factor-1 receptors: the Src homology-2 domain-containing protein hGrb10 binds to the autophosphorylated tyrosine residues in the kinase domain of the insulin receptor. Mol Endocrinol 1997; 11: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  37. Bowman T, Garcia R, Turkson J, Jove R . STATs in oncogenesis. Oncogene 2000; 19: 2474–2488.

    Article  CAS  PubMed  Google Scholar 

  38. Benekli M, Baer MR, Baumann H, Wetzler M . Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101: 2940–2954.

    Article  CAS  PubMed  Google Scholar 

  39. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr . Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 1998; 18: 2553–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  41. Goutebroze L, Brault E, Muchardt C, Camonis J, Thomas G . Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol Cell Biol 2000; 20: 1699–1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu N, Liu S, Guo C, Hou Z, Sun MZ . The role of annexin A3 playing in cancers. Clin Transl Oncol 2013; 15: 106–110.

    Article  CAS  PubMed  Google Scholar 

  43. Giridhar PV, Funk HM, Gallo CA, Porollo A, Mercer CA, Plas DR et al. Interleukin-6 receptor enhances early colonization of the murine omentum by upregulation of a mannose family receptor, LY75, in ovarian tumor cells. Clin Exp Metastasis 2011; 28: 887–897.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM, Epstein JA . Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 2009; 105: 1240–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. An N, Kraft AS, Kang Y . Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol 2013; 6: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blanco-Aparicio C, Carnero A . Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2013; 85: 629–643.

    Article  CAS  PubMed  Google Scholar 

  47. Yang Q, Chen LS, Neelapu SS, Miranda RN, Medeiros LJ, Gandhi V . Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma. Blood 2012; 120: 3491–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206: 1957–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shahidul Makki M, Cristy Ruteshouser E, Huff V . Ubiquitin specific protease 18 (Usp18) is a WT1 transcriptional target. Exp Cell Res 2013; 319: 612–622.

    Article  CAS  PubMed  Google Scholar 

  50. Zhuang WY, Cen JN, Zhao Y, Chen ZX . Epigenetic silencing of Bcl-2, CEBPA and p14ARF by the AML1-ETO oncoprotein contributing to growth arrest and differentiation block in the U937 cell line. Oncol Rep 2013; 30: 185–192.

    Article  CAS  PubMed  Google Scholar 

  51. Thieblemont C, Briere J . MYC, BCL2, BCL6 in DLBCL: impact for clinics in the future? Blood 2013; 121: 2165–2166.

    Article  CAS  PubMed  Google Scholar 

  52. Blume-Jensen P, Siegbahn A, Stabel S, Heldin CH, Rönnstrand L . Increased Kit/SCF receptor induced mitogenicity but abolished cell motility after inhibition of protein kinase C. EMBO J 1993; 12: 4199–4209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun J, Pedersen M, Rönnstrand L . Gab2 is involved in differential phosphoinositide 3-kinase signaling by two splice forms of c-Kit. J Biol Chem 2008; 283: 27444–27451.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council, the Swedish Cancer Foundation, Gunnar Nilsson Cancer foundation, the Stiftelsen Olle Engkvist Byggmästare, Royal Physiographic Society in Lund, Ollie och Elof Ericssons Stiftelse and Stiftelsen Lars Hiertas Minne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Rönnstrand.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Kazi, J., Mohlin, S. et al. The activation loop tyrosine 823 is essential for the transforming capacity of the c-Kit oncogenic mutant D816V. Oncogene 34, 4581–4590 (2015). https://doi.org/10.1038/onc.2014.383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.383

This article is cited by

Search

Quick links