Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer

Subjects

Abstract

Tumour heterogeneity is a major factor undermining the success of therapies targeting metastatic cancer. Two major theories are thought to explain the phenomenon of heterogeneity in cancer—clonal evolution and cell plasticity. In this review, we examine a growing body of work implicating the transcription factor FOS-related antigen 1 (FRA-1) as a central node in tumour cell plasticity networks, and discuss mechanisms regulating its activity in cancer cells. We also discuss evidence from the FRA-1 perspective supporting the notion that clonal selection and cell plasticity represent two sides of the same coin. We propose that FRA-1-overexpressing clones featuring high plasticity undergo positive selection during consecutive stages of multistep tumour progression. This model underscores a potential mechanism through which tumour cells retaining elevated levels of plasticity acquire a selective advantage over other clonal populations within a tumour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Fearon ER, Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    CAS  PubMed  Google Scholar 

  2. Wu M, Pastor-Pareja JC, Xu T . Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 2010; 463: 545–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Celia-Terrassa T, Meca-Cortes O, Mateo F, de Paz AM, Rubio N, Arnal-Estape A et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 2012; 122: 1849–1868.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K . Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 2014.

  5. Meacham CE, Morrison SJ . Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501: 328–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 2008; 3: e2888.

    PubMed  PubMed Central  Google Scholar 

  7. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    CAS  PubMed  Google Scholar 

  9. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  10. Zheng H, Kang Y . Multilayer control of the EMT master regulators. Oncogene 2014; 33: 1755–1763.

    CAS  PubMed  Google Scholar 

  11. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC, Weinberg RA . The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 2006; 103: 18969–18974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA et al. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 2009; 119: 2663–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 2012; 22: 709–724.

    CAS  PubMed  Google Scholar 

  15. De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.

    CAS  PubMed  Google Scholar 

  16. Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006; 131: 830–840.

    CAS  PubMed  Google Scholar 

  17. Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30: 770–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148: 349–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001; 98: 10356–10361.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brabletz T . To differentiate or not—routes towards metastasis. Nat Rev Cancer 2012; 12: 425–436.

    CAS  PubMed  Google Scholar 

  22. Nieto MA . Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.

    PubMed  Google Scholar 

  23. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 2011; 17: 1101–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J . Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Signore M, Ricci-Vitiani L, De Maria R . Targeting apoptosis pathways in cancer stem cells. Cancer Lett 2013; 332: 374–382.

    CAS  PubMed  Google Scholar 

  26. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA . Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18: 1131–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mejlvang J, Kriajevska M, Vandewalle C, Chernova T, Sayan AE, Berx G et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol Biol Cell 2007; 18: 4615–4624.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh A, Settleman J . EMT cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29: 4741–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang GN, Liang Y, Zhou LJ, Chen SP, Chen G, Zhang TP et al. Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Lett 2011; 313: 137–144.

    CAS  PubMed  Google Scholar 

  32. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    CAS  PubMed  Google Scholar 

  33. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.

    CAS  PubMed  Google Scholar 

  37. Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 2011; 195: 417–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10: 4256–4271.

    CAS  PubMed  Google Scholar 

  39. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8: 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  40. Ahn YH, Gibbons DL, Chakravarti D, Creighton CJ, Rizvi ZH, Adams HP et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J Clin Invest 2012; 122: 3170–3183.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Article  PubMed  Google Scholar 

  42. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–1495.

    CAS  PubMed  Google Scholar 

  43. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li X, Roslan S, Johnstone CN, Wright JA, Bracken CP, Anderson M et al. MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 2014; 33: 4077–4088.

    CAS  PubMed  Google Scholar 

  45. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    Article  CAS  PubMed  Google Scholar 

  46. Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 2005; 19: 1974–1979.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5: 744–749.

    CAS  PubMed  Google Scholar 

  48. Xu J, Lamouille S, Derynck R . TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

    CAS  PubMed  Google Scholar 

  49. Drabsch Y, ten Dijke P . TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 2012; 31: 553–568.

    CAS  PubMed  Google Scholar 

  50. Derynck R, Akhurst RJ, Balmain A . TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    CAS  PubMed  Google Scholar 

  51. Siegel PM, Massague J . Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003; 3: 807–821.

    CAS  PubMed  Google Scholar 

  52. Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531–542.

    CAS  PubMed  Google Scholar 

  53. Oft M, Heider KH, Beug H . TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998; 8: 1243–1252.

    CAS  PubMed  Google Scholar 

  54. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005; 102: 13909–13914.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Welch DR, Fabra A, Nakajima M . Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 1990; 87: 7678–7682.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH et al. Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 2004; 64: 9002–9011.

    CAS  PubMed  Google Scholar 

  57. Massague J . TGFbeta in Cancer. Cell 2008; 134: 215–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 2009; 11: 943–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van Grunsven LA, Taelman V, Michiels C, Opdecamp K, Huylebroeck D, Bellefroid EJ . deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Dev Dyn 2006; 235: 1491–1500.

    CAS  PubMed  Google Scholar 

  60. Postigo AA, Depp JL, Taylor JJ, Kroll KL . Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 2003; 22: 2453–2462.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A . Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 2006; 174: 175–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y et al. DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell 2006; 11: 93–104.

    CAS  PubMed  Google Scholar 

  63. Peinado H, Olmeda D, Snail Cano A . Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    CAS  PubMed  Google Scholar 

  64. Moustakas A, Heldin CH . Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007; 98: 1512–1520.

    CAS  PubMed  Google Scholar 

  65. Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B et al. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009; 16: 195–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22: 1686–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25: 666–681.

    CAS  PubMed  Google Scholar 

  68. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S et al. TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22: 291–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hill L, Browne G, Tulchinsky E . ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 2013; 132: 745–754.

    CAS  PubMed  Google Scholar 

  70. Lloyd A, Yancheva N, Wasylyk B . Transformation suppressor activity of a Jun transcription factor lacking its activation domain. Nature 1991; 352: 635–638.

    CAS  PubMed  Google Scholar 

  71. Tulchinsky E . Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol 2000; 15: 921–928.

    CAS  PubMed  Google Scholar 

  72. Ransone LJ, Verma IM . Nuclear proto-oncogenes fos and jun. Annu Rev Cell Biol 1990; 6: 539–557.

    CAS  PubMed  Google Scholar 

  73. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    CAS  PubMed  Google Scholar 

  74. Matthews CP, Colburn NH, Young MR . AP-1 a target for cancer prevention. Curr Cancer Drug Targets 2007; 7: 317–324.

    CAS  PubMed  Google Scholar 

  75. Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 1992; 71: 1103–1116.

    CAS  PubMed  Google Scholar 

  76. Tam WL, Lu H, Buikhuisen J, Soh BS, Lim E, Reinhardt F et al. Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 2013; 24: 347–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kustikova O, Kramerov D, Grigorian M, Berezin V, Bock E, Lukanidin E et al. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol Cell Biol 1998; 18: 7095–7105.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Belguise K, Kersual N, Galtier F, Chalbos D . FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 2005; 24: 1434–1444.

    CAS  PubMed  Google Scholar 

  79. Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M . Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol Cell Biol 2007; 27: 3936–3950.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Basbous J, Jariel-Encontre I, Gomard T, Bossis G, Piechaczyk M . Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie 2008; 90: 296–305.

    CAS  PubMed  Google Scholar 

  81. Pakay JL, Diesch J, Gilan O, Yip YY, Sayan E, Kolch W et al. A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells. Oncogene 2012; 31: 1817–1824.

    CAS  PubMed  Google Scholar 

  82. Belguise K, Milord S, Galtier F, Moquet-Torcy G, Piechaczyk M, Chalbos D . The PKCtheta pathway participates in the aberrant accumulation of Fra-1 protein in invasive ER-negative breast cancer cells. Oncogene 2012; 31: 4889–4897.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vial E, Marshall CJ . Elevated ERK-MAP kinase activity protects the FOS family member FRA-1 against proteasomal degradation in colon carcinoma cells. J Cell Sci 2003; 116: 4957–4963.

    CAS  PubMed  Google Scholar 

  84. Gu X, Yu JJ, Ilter D, Blenis N, Henske EP, Blenis J . Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci USA 2013; 110: 14960–14965.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Murphy LO, MacKeigan JP, Blenis J . A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 2004; 24: 144–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    CAS  PubMed  Google Scholar 

  87. Adiseshaiah P, Papaiahgari SR, Vuong H, Kalvakolanu DV, Reddy SP . Multiple cis-elements mediate the transcriptional activation of human fra-1 by 12-O-tetradecanoylphorbol-13-acetate in bronchial epithelial cells. J Biol Chem 2003; 278: 47423–47433.

    CAS  PubMed  Google Scholar 

  88. Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S . Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 2009; 138: 1122–1136.

    CAS  PubMed  Google Scholar 

  89. Bergers G, Graninger P, Braselmann S, Wrighton C, Busslinger M . Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol Cell Biol 1995; 15: 3748–3758.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Casalino L, De Cesare D, Verde P . Accumulation of Fra-1 in ras-transformed cells depends on both transcriptional autoregulation and MEK-dependent posttranslational stabilization. Mol Cell Biol 2003; 23: 4401–4415.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vikhanskaya F, Toh WH, Dulloo I, Wu Q, Boominathan L, Ng HH et al. p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nat Cell Biol 2007; 9: 698–705.

    CAS  PubMed  Google Scholar 

  92. Gilan O, Diesch J, Amalia M, Jastrzebski K, Chueh A, Verrills NM et al. PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene (e-pub ahead of print 17 March 2014; doi: 10.1038/onc.2014.26).

    PubMed  Google Scholar 

  93. Zhao C, Qiao Y, Jonsson P, Wang J, Xu L, Rouhi P et al. Genome-wide Profiling of AP-1-Regulated Transcription Provides Insights into the Invasiveness of Triple-Negative Breast Cancer. Cancer Res 2014; 74: 3983–3994.

    CAS  PubMed  Google Scholar 

  94. Ding X, Pan H, Li J, Zhong Q, Chen X, Dry SM et al. Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci Signal 2013; 6: ra28 21–13, S20–15.

    PubMed  PubMed Central  Google Scholar 

  95. Pollock CB, Shirasawa S, Sasazuki T, Kolch W, Dhillon AS . Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res 2005; 65: 1244–1250.

    CAS  PubMed  Google Scholar 

  96. Vial E, Sahai E, Marshall CJ . ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 2003; 4: 67–79.

    CAS  PubMed  Google Scholar 

  97. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell 2009; 35: 511–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J . ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 2010; 38: 114–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Diesch J, Sanij E, Gilan O, Love C, Tran H, Fleming NI et al. Widespread FRA1-dependent control of mesenchymal transdifferentiation programs in colorectal cancer cells. PLoS ONE 2014; 9: e88950.

    PubMed  PubMed Central  Google Scholar 

  100. Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24: 466–480.

    CAS  PubMed  Google Scholar 

  101. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156: 299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sundqvist A, Zieba A, Vasilaki E, Herrera Hidalgo C, Soderberg O, Koinuma D et al. Specific interactions between Smad proteins and AP-1 components determine TGFbeta-induced breast cancer cell invasion. Oncogene 2013; 32: 3606–3615.

    CAS  PubMed  Google Scholar 

  103. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14: 2610–2622.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al. Raf induces TGF-beta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14: 2610–2622.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al. Ras and TGF-beta cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156: 299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M . Raf plus TGF-beta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene 2006; 25: 7117–7130.

    CAS  PubMed  Google Scholar 

  107. Desmet CJ, Gallenne T, Prieur A, Reyal F, Visser NL, Wittner BS et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci USA 2013; 110: 5139–5144.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moustakas A, Heldin CH . Non-Smad TGF-beta signals. J Cell Sci 2005; 118: 3573–3584.

    CAS  PubMed  Google Scholar 

  109. Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R . TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci 2012; 125: 1259–1273.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 2011; 208: 875–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu J, Wu G, Lv L, Ren YF, Zhang XJ, Xue YF et al. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis 2012; 33: 519–528.

    CAS  PubMed  Google Scholar 

  113. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 2013; 32: 4294–4303.

    CAS  PubMed  Google Scholar 

  114. Giles RH, van Es JH, Clevers H . Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653: 1–24.

    CAS  PubMed  Google Scholar 

  115. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M et al. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 1999; 96: 1603–1608.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A . beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA 2011; 108: 19204–19209.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fodde R, Brabletz T . Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007; 19: 150–158.

    CAS  PubMed  Google Scholar 

  118. Kahlert C, Lahes S, Radhakrishnan P, Dutta S, Mogler C, Herpel E et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res 2011; 17: 7654–7663.

    CAS  PubMed  Google Scholar 

  119. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 2011; 4: ra71.

    PubMed  PubMed Central  Google Scholar 

  120. Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI . MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle 2012; 11: 1273–1281.

    CAS  PubMed  Google Scholar 

  121. Puisieux A, Brabletz T, Caramel J . Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.

    CAS  PubMed  Google Scholar 

  122. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 2008; 14: 79–89.

    CAS  PubMed  Google Scholar 

  123. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008; 13: 58–68.

    PubMed  Google Scholar 

  124. Klein CA . Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009; 9: 302–312.

    CAS  PubMed  Google Scholar 

  125. Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ . Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal To stimulate DNA synthesis. Mol Cell Biol 1999; 19: 321–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kakumoto K, Sasai K, Sukezane T, Oneyama C, Ishimaru S, Shibutani K et al. FRA1 is a determinant for the difference in RAS-induced transformation between human and rat fibroblasts. Proc Natl Acad Sci USA 2006; 103: 5490–5495.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sayan AE, Stanford R, Vickery R, Grigorenko E, Diesch J, Kulbicki K et al. Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 2012; 31: 1493–1503.

    CAS  PubMed  Google Scholar 

  128. Usui A, Hoshino I, Akutsu Y, Sakata H, Nishimori T, Murakami K et al. The molecular role of Fra-1 and its prognostic significance in human esophageal squamous cell carcinoma. Cancer 2012; 118: 3387–3396.

    CAS  PubMed  Google Scholar 

  129. Frisch SM . The epithelial cell default-phenotype hypothesis and its implications for cancer. BioEssays 1997; 19: 705–709.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the colleagues whose relevant work we were unable to cite owing to space limitations. This work was supported by project grants from the National Health and Medical Research Council of Australia (to ASD), and Cancer Research UK (CRUK) and Association for International Cancer Research (AICR) (to ET).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A S Dhillon or E Tulchinsky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, A., Tulchinsky, E. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer. Oncogene 34, 4421–4428 (2015). https://doi.org/10.1038/onc.2014.374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.374

This article is cited by

Search

Quick links