Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model

Abstract

MCPH1, also known as BRIT1, has recently been identified as a novel key regulatory gene of the DNA damage response pathway. MCPH1 is located on human chromosome 8p23.1, where human cancers frequently show loss of heterozygosity. As such, MCPH1 is aberrantly expressed in many malignancies, including breast and ovarian cancers, and the function of MCPH1 has been implicated in tumor suppression. However, it remains poorly understood whether MCPH1 deficiency leads to tumorigenesis. Here we generated and studied both Mcph1−/− and Mcph1−/−p53−/− mice; we showed that Mcph1−/− mice developed tumors with long latency, and that primary lymphoma developed significantly earlier in Mcph1−/−p53−/− mice than in Mcph11+/+p53−/− and Mcph1+/−p53−/− mice. The Mcph1−/−p53−/− lymphomas and derived murine embryonic fibroblasts (MEFs) were both more sensitive to irradiation. Mcph1 deficiency resulted in remarkably increased chromosome and chromatid breaks in Mcph1−/−p53−/− lymphomas and MEFs, as determined by metaphase spread assay and spectral karyotyping analysis. In addition, Mcph1 deficiency significantly enhanced aneuploidy as well as abnormal centrosome multiplication in Mcph1−/−p53−/− cells. Meanwhile, Mcph1 deficiency impaired double strand break (DSB) repair in Mcph1−/−p53−/− MEFs as demonstrated by neutral Comet assay. Compared with Mcph1+/+p53−/− MEFs, homologous recombination and non-homologous end-joining activities were significantly decreased in Mcph1−/−p53−/− MEFs. Notably, reconstituted MCPH1 rescued the defects of DSB repair and alleviated chromosomal aberrations in Mcph1−/−p53−/− MEFs. Taken together, our data demonstrate MCPH1 deficiency promotes genomic instability and increases cancer susceptibility. Our study using knockout mouse models provides convincing genetic evidence that MCPH1 is a bona fide tumor suppressor gene. Its deficiency leading to defective DNA repair in tumors can be used to develop novel targeted cancer therapies in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rai R, Dai H, Multani AS, Li K, Chin K, Gray J et al. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 2006; 10: 145–157.

    Article  CAS  Google Scholar 

  2. Lin SY, Liang Y, Li K . Multiple roles of MCPH1/MCPH1 in DNA damage response, DNA repair, and cancer suppression. Yonsei Med J 2010; 51: 295–301.

    Article  CAS  Google Scholar 

  3. Venkatesh T, Suresh PS . Emerging roles of MCPH1: expedition from primary microcephaly to cancer. Eur J Cell Biol 2014; 93: 98–105.

    Article  CAS  Google Scholar 

  4. Mohammad DH, Yaffe MB . 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 2009; 8: 1009–1017.

    Article  CAS  Google Scholar 

  5. Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV . A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 1997; 11: 68–76.

    Article  CAS  Google Scholar 

  6. Manke IA, Lowery DM, Nguyen A, Yaffe MB . BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 2003; 302: 636–639.

    Article  CAS  Google Scholar 

  7. Yu X, Chini CC, He M, Mer G, Chen J . The BRCT domain is a phospho-protein binding domain. Science 2003; 302: 639–642.

    Article  CAS  Google Scholar 

  8. Clapperton JA, Manke IA, Lowery DM, Ho T, Haire LF, Yaffe MB et al. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol 2004; 11: 512–518.

    Article  CAS  Google Scholar 

  9. Wood JL, Singh N, Mer G, Chen J . MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J Biol Chem 2007; 282: 35416–35423.

    Article  CAS  Google Scholar 

  10. Yang SZ, Lin FT, Lin WC . MCPH1/MCPH1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 2008; 9: 907–915.

    Article  CAS  Google Scholar 

  11. Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR et al. MCPH1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 2009; 11: 865–872.

    Article  CAS  Google Scholar 

  12. Wu X, Mondal G, Wang X, Wu J, Yang L, Pankratz VS et al. Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res 2009; 69: 5531–5536.

    Article  CAS  Google Scholar 

  13. Leung JW, Leitch A, Wood JL, Shaw-Smith C, Metcalfe K, Bicknell LS et al. SET nuclear oncogene associates with microcephalin/MCPH1 and regulates chromosome condensation. J Biol Chem 2011; 286: 21393–21400.

    Article  CAS  Google Scholar 

  14. Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ . MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 2011; 13: 1325–1334.

    Article  CAS  Google Scholar 

  15. Singh N, Wiltshire TD, Thompson JR, Mer G, Couch FJ . Molecular basis for the association of microcephalin (MCPH1) protein with the cell division cycle protein 27 (Cdc27) subunit of the anaphase-promoting complex. J Biol Chem 2012; 287: 2854–2862.

    Article  CAS  Google Scholar 

  16. Shi L, Li M, Su B . MCPH1/MCPH1 represses transcription of the human telomerase reverse transcriptase gene. Gene 2012; 495: 1–9.

    Article  CAS  Google Scholar 

  17. Liang Y, Gao H, Lin SY, Peng G, Huang X, Zhang P et al. MCPH1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice. PLoS Genet 2010; 6: e1000826.

    Article  Google Scholar 

  18. Alderton GK, Galbiati L, Griffith E, Surinya KH, Neitzel H, Jackson AP et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 2006; 8: 725–733.

    Article  CAS  Google Scholar 

  19. Brown JA, Bourke E, Liptrot C, Dockery P, Morrison CG . MCPH1/MCPH1 limits ionizing radiation-induced centrosome amplification. Oncogene 2010; 29: 5537–5544.

    Article  CAS  Google Scholar 

  20. Richardson J, Shaaban AM, Kamal M, Alisary R, Walker C, Ellis IO et al. Microcephalin is a new novel prognostic indicator in breast cancer associated with BRCA1 inactivation. Breast Cancer Res Treat 2011; 127: 639–648.

    Article  CAS  Google Scholar 

  21. Brüning-Richardson A, Bond J, Alsiary R, Richardson J, Cairns DA, McCormack L et al. ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br J Cancer 2011; 104: 1602–1610.

    Article  Google Scholar 

  22. Venkatesh T, Nagashri MN, Swamy SS, Mohiyuddin SM, Gopinath KS, Kumar A . Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma. PLoS ONE 2013; 8: e54643.

    Article  CAS  Google Scholar 

  23. Zhang J, Wu XB, Fan JJ, Mai L, Cai W, Li D et al. MCPH1 protein expression in normal and neoplastic lung tissues. Asian Pac J Cancer Prev 2013; 14: 7295–7300.

    Article  Google Scholar 

  24. Bhattacharya N, Mukherjee N, Singh RK, Sinha S, Alam N, Roy A et al. Frequent alterations of MCPH1 and ATM are associated with primary breast carcinoma: clinical and prognostic implications. Ann Surg Oncol 2013; 20 (Suppl 3): S424–S432.

    Article  Google Scholar 

  25. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114: 371–383.

    Article  CAS  Google Scholar 

  26. Roos WP, Kaina B . DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12: 440–450.

    Article  CAS  Google Scholar 

  27. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661–665.

    Article  CAS  Google Scholar 

  28. Olive PL, Banáth JP . The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1: 23–29.

    Article  CAS  Google Scholar 

  29. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S et al. GammaH2AX and cancer. Nat Rev Cancer 2008; 8: 957–967.

    Article  CAS  Google Scholar 

  30. Ward IM, Difilippantonio S, Minn K, Mueller MD, Molina JR, Yu X et al. 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol Cell Biol 2005; 25: 10079–10086.

    Article  CAS  Google Scholar 

  31. Sung P, Klein H . Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 2006; 7: 739–750.

    Article  CAS  Google Scholar 

  32. Lieber MR, Ma Y, Pannicke U, Schwarz K . Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4: 712–720.

    Article  CAS  Google Scholar 

  33. Rothenberg EV, Taghon T . Molecular genetics of T cell development. Annu Rev Immunol 2005; 23: 601–649.

    Article  CAS  Google Scholar 

  34. Matsumoto K, Yoshikai Y, Moroi Y, Asano T, Ando T, Nomoto K . Two differential pathways from double-negative to double-positive thymocytes. Immunology 1991; 72: 20–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Efeyan A, Serrano M . p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 2007; 6: 1006–1010.

    Article  CAS  Google Scholar 

  36. Bachelier R, Xu X, Wang X, Li W, Naramura M, Gu H et al. Normal lymphocyte development and thymic lymphoma formation in Brca1 exon-11-deficient mice. Oncogene 2003; 22: 528–537.

    Article  CAS  Google Scholar 

  37. Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW et al. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol Cell Biol 2005; 25: 661–670.

    Article  CAS  Google Scholar 

  38. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  Google Scholar 

  39. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006; 9: 121–132.

    Article  CAS  Google Scholar 

  40. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 2007; 45: 938–947.

    Article  CAS  Google Scholar 

  41. Duesberg P, Fabarius A, Hehlmann R . Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life 2004; 56: 65–81.

    Article  CAS  Google Scholar 

  42. Gordon DJ, Resio B, Pellman D . Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13: 189–203.

    Article  CAS  Google Scholar 

  43. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–303.

    Article  CAS  Google Scholar 

  44. Tarapore P, Fukasawa K . Loss of p53 and centrosome hyperamplification. Oncogene 2002; 21: 6234–6240.

    Article  CAS  Google Scholar 

  45. Rai R, Phadnis A, Haralkar S, Badwe RA, Dai H, Li K et al. Differential regulation of centrosome integrity by DNA damage response proteins. Cell Cycle 2008; 7: 2225–2233.

    Article  CAS  Google Scholar 

  46. Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B et al. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 2009; 185: 1149–1157.

    Article  CAS  Google Scholar 

  47. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71.

    Article  CAS  Google Scholar 

  48. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378: 789–792.

    Article  CAS  Google Scholar 

  49. Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, Salada G et al. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 1998; 17: 2279–2285.

    Article  CAS  Google Scholar 

  50. Hiramoto T, Nakanishi T, Sumiyoshi T, Fukuda T, Matsuura S, Tauchi H et al. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 1999; 18: 3422–3426.

    Article  CAS  Google Scholar 

  51. Schoenmakers EF, Huysmans C, Van de Ven WJ . Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999; 59: 19–23.

    CAS  PubMed  Google Scholar 

  52. Mohaghegh P, Hickson ID . DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum Mol Genet 2001; 10: 741–746.

    Article  CAS  Google Scholar 

  53. Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT, Danska JS . V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev 1996; 10: 2038–2054.

    Article  CAS  Google Scholar 

  54. Nacht M, Strasser A, Chan YR, Harris AW, Schlissel M, Bronson RT et al. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev 1996; 10: 2055–2066.

    Article  CAS  Google Scholar 

  55. Gurley KE, Vo K, Kemp CJ . DNA double-strand breaks, p53, and apoptosis during lymphomagenesis in scid/scid mice. Cancer Res 1998; 58: 3111–3115.

    CAS  Google Scholar 

  56. Zhang B, Wang E, Dai H, Hu R, Liang Y, Li K et al. BRIT1 regulates p53 stability and functions as a tumor suppressor in breast cancer. Carcinogenesis 2013; 34: 2271–2280.

    Article  CAS  Google Scholar 

  57. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  Google Scholar 

  58. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002; 19: 607–614.

    Article  CAS  Google Scholar 

  59. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  Google Scholar 

  60. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  CAS  Google Scholar 

  61. Mailloux AW, Young MR . NK-dependent increases in CCL22 secretion selectively recruits regulatory T cells to the tumor microenvironment. J Immunol 2009; 182: 2753–2765.

    Article  CAS  Google Scholar 

  62. Grundy S, Plumb J, Lea S, Kaur M, Ray D, Singh D . Down regulation of T cell receptor expression in COPD pulmonary CD8 cells. PLoS ONE 2013; 8: e71629.

    Article  CAS  Google Scholar 

  63. Mei J, Huang X, Zhang P . Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Curr Biol 2001; 11: 1197–1201.

    Article  CAS  Google Scholar 

  64. Singh B, Stoffel A, Gogineni SK, Poluri A, Pfister DG, Shaha AR et al. Amplification of the 3q26.3 locus is associated with progression to invasive cancer and is a negative prognostic factor in head and neck squamous cell carcinomas. Am J Pathol 2002; 161: 365–371.

    Article  CAS  Google Scholar 

  65. Sotiropoulou PA, Candi A, Mascré G, De Clercq S, Youssef KK, Lapouge G et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat Cell Biol 2010; 12: 572–582.

    Article  CAS  Google Scholar 

  66. Milliken EL, Lozada KL, Johnson E, Landis MD, Seachrist DD, Whitten I et al. Ovarian hyperstimulation induces centrosome amplification and aneuploid mammary tumors independently of alterations in p53 in a transgenic mouse model of breast cancer. Oncogene 2008; 27: 1759–1766.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to KL (R01-CA155151 and R21-CA161513), a grant from the St Luke’s Episcopal Hospital McDonald Research Foundation to KL and a grant from National Natural Science Foundation of China (to YL, 81372589). We thank BCM Cytometry and Cell Sorting Core (NCRR S10RR024574, NIAID AI036211 and NCI P30CA125123) and Molecular Morphology Core Laboratory (PHS DK56338) for technical assistance. We also thank Drs Zhijie Li, Han Lin, Ana Rodríguez (all from Baylor College of Medicine, Houston, TX, USA) and Guang Peng (UT MD Anderson Cancer Center, Houston, TX, USA) for providing anti-CD4/CD8 antibodies (ZL), assisting in NHEJ analysis (HL), editing of this manuscript (AR) and providing HR-related plasmids (GP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Gao, H., Lin, SY. et al. Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model. Oncogene 34, 4368–4378 (2015). https://doi.org/10.1038/onc.2014.367

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.367

This article is cited by

Search

Quick links