Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Context-specific regulation of cancer epigenomes by histone and transcription factor methylation

Abstract

Altered expression or activity of histone lysine methylases and demethylases in cancer lead to aberrant chromatin modification patterns, which contribute to uncontrolled cell proliferation via cancer-specific deregulation of gene expression programs or the induction of genome instability. Several transcription factors that regulate growth-associated genes undergo lysine methylation, expanding the repertoire of regulatory targets modulated by histone-methylating enzymes during tumorigenesis. In certain specific tumor types or specific physiological conditions, these enzymes may trigger chromatin structure and/or transcription factor activity changes that result in opposite effects on cancer initiation or progression. The mechanisms of such context-specific dual functions and those involved in the crosstalk between factor and histone modifications are subject to extensive research, which is beginning to shed light into this novel level of complexity of cancer-related epigenetic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  3. Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8: 286–298.

    CAS  PubMed  Google Scholar 

  4. Bhaumik SR, Smith E, Shilatifard A . Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 2007; 14: 1008–1016.

    CAS  PubMed  Google Scholar 

  5. Berger SL . The complex language of chromatin regulation during transcription. Nature 2007; 447: 407–412.

    CAS  PubMed  Google Scholar 

  6. Trojer P, Reinberg D . Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 2007; 28: 1–13.

    CAS  PubMed  Google Scholar 

  7. Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007; 131: 58–69.

    CAS  PubMed  Google Scholar 

  8. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116–120.

    CAS  PubMed  Google Scholar 

  9. Albert M, Helin K . Histone methyltransferases in cancer. Semin Cell Dev Biol 2010; 21: 209–220.

    CAS  PubMed  Google Scholar 

  10. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    CAS  PubMed  Google Scholar 

  11. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    CAS  PubMed  Google Scholar 

  12. Dorrance AM, Liu S, Chong A, Pulley B, Nemer D, Guimond M et al. The Mll partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 2008; 112: 2508–2511.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dorrance AM, Liu S, Yuan W, Becknell B, Arnoczky KJ, Guimond M et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 2006; 116: 2707–2716.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Whitman SP, Hackanson B, Liyanarachchi S, Liu S, Rush LJ, Maharry K et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008; 112: 2013–2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 331: 435–439.

    CAS  PubMed  Google Scholar 

  16. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 2012; 109: 2989–2994.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  20. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 2006; 12: 1168–1174.

    CAS  PubMed  Google Scholar 

  22. Weikert S, Christoph F, Kollermann J, Muller M, Schrader M, Miller K et al. Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med 2005; 16: 349–353.

    CAS  PubMed  Google Scholar 

  23. Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T . The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer 2006; 45: 639–645.

    CAS  PubMed  Google Scholar 

  24. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695–1699.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    CAS  PubMed  Google Scholar 

  26. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268–273.

    CAS  PubMed  Google Scholar 

  27. van Kemenade FJ, Raaphorst FM, Blokzijl T, Fieret E, Hamer KM, Satijn DP et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 2001; 97: 3896–3901.

    CAS  PubMed  Google Scholar 

  28. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202–4212.

    CAS  PubMed  Google Scholar 

  29. Fujii S, Ochiai A . Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci 2008; 99: 738–746.

    CAS  PubMed  Google Scholar 

  30. Kondo Y, Shen L, Suzuki S, Kurokawa T, Masuko K, Tanaka Y et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 2007; 37: 974–983.

    CAS  PubMed  Google Scholar 

  31. Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 2001; 98: 1264–1267.

    CAS  PubMed  Google Scholar 

  32. Cerveira N, Correia C, Doria S, Bizarro S, Rocha P, Gomes P et al. Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia 2003; 17: 2244–2247.

    CAS  PubMed  Google Scholar 

  33. Tatton-Brown K, Douglas J, Coleman K, Baujat G, Cole TR, Das S et al. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet 2005; 77: 193–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA 2009; 106: 21830–21835.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kassambara A, Klein B, Moreaux J . MMSET is overexpressed in cancers: link with tumor aggressiveness. Biochem Biophys Res Commun 2009; 379: 840–845.

    CAS  PubMed  Google Scholar 

  36. Hudlebusch HR, Santoni-Rugiu E, Simon R, Ralfkiaer E, Rossing HH, Johansen JV et al. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors. Clin Cancer Res 2011; 17: 2919–2933.

    CAS  PubMed  Google Scholar 

  37. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Malgeri U, Baldini L, Perfetti V, Fabris S, Vignarelli MC, Colombo G et al. Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by reverse transcription-polymerase chain reaction analysis of IGH-MMSET fusion transcripts. Cancer Res 2000; 60: 4058–4061.

    CAS  PubMed  Google Scholar 

  39. Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood 2002; 99: 3857–3860.

    CAS  PubMed  Google Scholar 

  40. Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P . NSD3 a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 2001; 74: 79–88.

    CAS  PubMed  Google Scholar 

  41. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 2010; 70: 4287–4291.

    CAS  PubMed  Google Scholar 

  42. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463: 360–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107: 323–337.

    CAS  PubMed  Google Scholar 

  44. Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 2009; 41: 465–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 2011; 471: 513–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J et al. Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol 2008; 21: 505–516.

    CAS  PubMed  Google Scholar 

  47. Komatsu S, Imoto I, Tsuda H, Ki Kozaki, Muramatsu T, Shimada Y et al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 2009; 30: 1139–1146.

    CAS  PubMed  Google Scholar 

  48. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004; 6: 731–740.

    CAS  PubMed  Google Scholar 

  49. Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 2006; 97: 113–118.

    CAS  PubMed  Google Scholar 

  50. Hu L, Zhu YT, Qi C, Zhu YJ . Identification of Smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res 2009; 69: 4067–4072.

    CAS  PubMed  Google Scholar 

  51. Takawa M, Cho HS, Hayami S, Toyokawa G, Kogure M, Yamane Y et al. Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res 2012; 72: 3217–3227.

    CAS  PubMed  Google Scholar 

  52. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    CAS  PubMed  Google Scholar 

  53. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8: 1017–1024.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM . Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006; 107: 4090–4100.

    CAS  PubMed  Google Scholar 

  56. Pasqualucci L, Compagno M, Houldsworth J, Monti S, Grunn A, Nandula SV et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 2006; 203: 311–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol 2008; 173: 242–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Courts C, Montesinos-Rongen M, Brunn A, Bug S, Siemer D, Hans V et al. Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma. J Neuropathol Exp Neurol 2008; 67: 720–727.

    CAS  PubMed  Google Scholar 

  59. He L, Yu JX, Liu L, Buyse IM, Wang MS, Yang QC et al. RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2-M cell cycle arrest and/or apoptosis. Cancer Res 1998; 58: 4238–4244.

    CAS  PubMed  Google Scholar 

  60. Du Y, Carling T, Fang W, Piao Z, Sheu JC, Huang S . Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res 2001; 61: 8094–8099.

    CAS  PubMed  Google Scholar 

  61. Chadwick RB, Jiang GL, Bennington GA, Yuan B, Johnson CK, Stevens MW et al. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc Natl Acad Sci USA 2000; 97: 2662–2667.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev 2001; 15: 2250–2262.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Oshimo Y, Oue N, Mitani Y, Nakayama H, Kitadai Y, Yoshida K et al. Frequent epigenetic inactivation of RIZ1 by promoter hypermethylation in human gastric carcinoma. Int J Cancer 2004; 110: 212–218.

    CAS  PubMed  Google Scholar 

  64. Tokumaru Y, Nomoto S, Jeronimo C, Henrique R, Harden S, Trink B et al. Biallelic inactivation of the RIZ1 gene in human gastric cancer. Oncogene 2003; 22: 6954–6958.

    CAS  PubMed  Google Scholar 

  65. Piao GH, Piao WH, He Y, Zhang HH, Wang GQ, Piao Z . Hyper-methylation of RIZ1 tumor suppressor gene is involved in the early tumorigenesis of hepatocellular carcinoma. Histol Histopathol 2008; 23: 1171–1175.

    CAS  PubMed  Google Scholar 

  66. Jiang G, Liu L, Buyse IM, Simon D, Huang S . Decreased RIZ1 expression but not RIZ2 in hepatoma and suppression of hepatoma tumorigenicity by RIZ1. Int J Cancer 1999; 83: 541–546.

    CAS  PubMed  Google Scholar 

  67. Deng Q, Huang S . PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene 2004; 23: 4903–4910.

    CAS  PubMed  Google Scholar 

  68. Watanabe Y, Toyota M, Kondo Y, Suzuki H, Imai T, Ohe-Toyota M et al. PRDM5 identified as a target of epigenetic silencing in colorectal and gastric cancer. Clin Cancer Res 2007; 13: 4786–4794.

    CAS  PubMed  Google Scholar 

  69. Kolomietz E, Marrano P, Yee K, Thai B, Braude I, Kolomietz A et al. Quantitative PCR identifies a minimal deleted region of 120 kb extending from the Philadelphia chromosome ABL translocation breakpoint in chronic myeloid leukemia with poor outcome. Leukemia 2003; 17: 1313–1323.

    CAS  PubMed  Google Scholar 

  70. Reid AG, Nacheva EP . A potential role for PRDM12 in the pathogenesis of chronic myeloid leukaemia with derivative chromosome 9 deletion. Leukemia 2004; 18: 178–180.

    CAS  PubMed  Google Scholar 

  71. Nishikawa N, Toyota M, Suzuki H, Honma T, Fujikane T, Ohmura T et al. Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res 2007; 67: 9649–9657.

    CAS  PubMed  Google Scholar 

  72. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    CAS  PubMed  Google Scholar 

  73. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4454.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin YH, Kakadia PM, Chen Y, Li YQ, Deshpande AJ, Buske C et al. Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 2009; 114: 651–658.

    CAS  PubMed  Google Scholar 

  75. Douglas J, Hanks S, Temple IK, Davies S, Murray A, Upadhyaya M et al. NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Hum Genet 2003; 72: 132–143.

    CAS  PubMed  Google Scholar 

  76. Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 2002; 30: 365–366.

    CAS  PubMed  Google Scholar 

  77. Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 2011; 117: 211–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M et al. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res 2007; 67: 2626–2631.

    CAS  PubMed  Google Scholar 

  79. Kim H, Heo K, Kim JH, Kim K, Choi J, An W . Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem 2009; 284: 19867–19877.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cock-Rada AM, Medjkane S, Janski N, Yousfi N, Perichon M, Chaussepied M et al. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res 2012; 72: 810–820.

    CAS  PubMed  Google Scholar 

  81. Komatsu S, Imoto I, Tsuda H, Kozaki KI, Muramatsu T, Shimada Y et al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 2009; 30: 1139–1146.

    CAS  PubMed  Google Scholar 

  82. Brown MA, Sims RJ, Gottlieb PD, Tucker PW . Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 2006; 5: 26.

    PubMed  PubMed Central  Google Scholar 

  83. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D . The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 2008; 7: 560–572.

    CAS  PubMed  Google Scholar 

  84. Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 2002; 9: 1201–1213.

    CAS  PubMed  Google Scholar 

  85. Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD . Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 2002; 16: 2225–2230.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Oda H, Hubner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell 2010; 40: 364–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM et al. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 2009; 29: 2278–2295.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME, Reinberg D . The role of PR-Set7 in replication licensing depends on Suv4–20h. Genes Dev 2012; 26: 2580–2589.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW et al. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 2010; 24: 2531–2542.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang F, Sun L, Li Q, Han X, Lei L, Zhang H et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 2012; 31: 110–123.

    CAS  PubMed  Google Scholar 

  91. Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 2012; 150: 934–947.

    CAS  PubMed  Google Scholar 

  92. O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T . The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 2001; 21: 4330–4336.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21: 525–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J 2007; 26: 1637–1648.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M . The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 2007; 26: 4590–4595.

    CAS  PubMed  Google Scholar 

  96. Yu J, Cao Q, Mehra R, Laxman B, Tomlins SA, Creighton CJ et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 2007; 12: 419–431.

    CAS  PubMed  Google Scholar 

  97. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008; 13: 69–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gonzalez ME, DuPrie ML, Krueger H, Merajver SD, Ventura AC, Toy KA et al. Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res 2011; 71: 2360–2370.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274–7284.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003; 22: 5323–5335.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee ST, Li Z, Wu Z, Aau M, Guan P, Karuturi RK et al. Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers. Mol Cell 2011; 43: 798–810.

    CAS  PubMed  Google Scholar 

  102. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338: 1465–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Asangani IA, Ateeq B, Cao Q, Dodson L, Pandhi M, Kunju LP et al. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol Cell 2012; 49: 80–93.

    PubMed  PubMed Central  Google Scholar 

  104. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pedersen MT, Helin K . Histone demethylases in development and disease. Trends Cell Biol 2010; 20: 662–671.

    CAS  PubMed  Google Scholar 

  106. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    CAS  PubMed  Google Scholar 

  107. Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 2010; 31: 512–520.

    CAS  PubMed  Google Scholar 

  108. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 2011; 128: 574–586.

    CAS  PubMed  Google Scholar 

  109. Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 2006; 66: 11341–11347.

    CAS  PubMed  Google Scholar 

  110. Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 2009; 69: 2065–2071.

    CAS  PubMed  Google Scholar 

  111. Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Holler T et al. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 2010; 41: 181–189.

    CAS  PubMed  Google Scholar 

  112. Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M . JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 2007; 450: 309–313.

    CAS  PubMed  Google Scholar 

  113. Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V et al. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 2008; 7: 3539–3547.

    CAS  PubMed  Google Scholar 

  114. Pfau R, Tzatsos A, Kampranis SC, Serebrennikova OB, Bear SE, Tsichlis PN . Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc Natl Acad Sci USA 2008; 105: 1907–1912.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cho HS, Toyokawa G, Daigo Y, Hayami S, Masuda K, Ikawa N et al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer 2012; 131: E179–E189.

    CAS  PubMed  Google Scholar 

  116. Li W, Zhao L, Zang W, Liu Z, Chen L, Liu T et al. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer. Biochem Biophys Res Commun 2011; 416: 372–378.

    CAS  PubMed  Google Scholar 

  117. Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 2010; 18: 590–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006; 442: 307–311.

    CAS  PubMed  Google Scholar 

  119. Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B et al. Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 2006; 208: 554–563.

    CAS  PubMed  Google Scholar 

  120. Italiano A, Attias R, Aurias A, Perot G, Burel-Vandenbos F, Otto J et al. Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet 2006; 167: 122–130.

    CAS  PubMed  Google Scholar 

  121. Zeng J, Ge Z, Wang L, Li Q, Wang N, Bjorkholm M et al. The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology 2010; 138: 981–992.

    CAS  PubMed  Google Scholar 

  122. Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 2007; 104: 19226–19231.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 1999; 274: 15633–15645.

    CAS  PubMed  Google Scholar 

  124. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 2012; 31: 776–786.

    CAS  PubMed  Google Scholar 

  125. van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009; 41: 521–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD . JMJD3 is a histone H3K27 demethylase. Cell Res 2007; 17: 850–857.

    CAS  PubMed  Google Scholar 

  127. Anderton JA, Bose S, Vockerodt M, Vrzalikova K, Wei W, Kuo M et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin's Lymphoma. Oncogene 2011; 30: 2037–2043.

    CAS  PubMed  Google Scholar 

  128. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 2009; 23: 1171–1176.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    CAS  PubMed  Google Scholar 

  130. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436–439.

    CAS  PubMed  Google Scholar 

  131. Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007; 9: 347–353.

    CAS  PubMed  Google Scholar 

  132. Kauffman EC, Robinson BD, Downes MJ, Powell LG, Lee MM, Scherr DS et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinog 2011; 50: 931–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pollock JA, Larrea MD, Jasper JS, McDonnell DP, McCafferty DG . Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chem Biol 2012; 7: 1221–1231.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010; 29: 1803–1816.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Li Q, Shi L, Gui B, Yu W, Wang J, Zhang D et al. Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Res 2011; 71: 6899–6908.

    CAS  PubMed  Google Scholar 

  136. He J, Kallin EM, Tsukada Y, Zhang Y . The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 2008; 15: 1169–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN . Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc Natl Acad Sci USA 2009; 106: 2641–2646.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 2009; 23: 1177–1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. McLaughlin-Drubin ME, Crum CP, Munger K . Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci USA 2011; 108: 2130–2135.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I . Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell 2004; 14: 175–182.

    CAS  PubMed  Google Scholar 

  141. Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F et al. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007; 27: 6756–6769.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432: 353–360.

    CAS  PubMed  Google Scholar 

  143. Yang XD, Tajkhorshid E, Chen LF . Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol Cell Biol 2010; 30: 2170–2180.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF . Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 2009; 28: 1055–1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ea CK, Baltimore D . Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc Natl Acad Sci USA 2009; 106: 18972–18977.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci USA 2010; 107: 21499–21504.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kontaki H, Talianidis I . Cross-talk between post-translational modifications regulate life or death decisions by E2F1. Cell Cycle 2010; 9: 3836–3837.

    CAS  PubMed  Google Scholar 

  148. Kontaki H, Talianidis I . Lysine methylation regulates E2F1-induced cell death. Mol Cell 2010; 39: 152–160.

    CAS  PubMed  Google Scholar 

  149. Munro S, Khaire N, Inche A, Carr S, La Thangue NB . Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 2010; 29: 2357–2367.

    CAS  PubMed  Google Scholar 

  150. Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB . Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J 2011; 30: 317–327.

    CAS  PubMed  Google Scholar 

  151. Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 2008; 30: 336–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gaughan L, Stockley J, Wang N, McCracken SR, Treumann A, Armstrong K et al. Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 2011; 39: 1266–1279.

    CAS  PubMed  Google Scholar 

  153. Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B . Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol 2011; 25: 433–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Esteve PO, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol 2011; 18: 42–48.

    CAS  PubMed  Google Scholar 

  155. Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA 2009; 106: 5076–5081.

    PubMed  PubMed Central  Google Scholar 

  156. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2009; 41: 125–129.

    CAS  PubMed  Google Scholar 

  157. Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA 2011; 108: 1925–1930.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H et al. Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep 2012; 13: 371–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Calnan DR, Webb AE, White JL, Stowe TR, Goswami T, Shi X et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY) 2012; 4: 462–479.

    CAS  Google Scholar 

  160. Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 2007; 27: 636–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006; 444: 629–632.

    CAS  PubMed  Google Scholar 

  162. Saddic LA, West LE, Aslanian A, Yates JR, Rubin SM, Gozani O et al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 2010; 285: 37733–37740.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P et al. Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol 2011; 12: 29–36.

    CAS  PubMed  Google Scholar 

  164. Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M et al. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA 2010; 107: 46–51.

    CAS  PubMed  Google Scholar 

  165. Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH et al. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci USA 2012; 109: 841–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ et al. G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta. J Biol Chem 2008; 283: 26357–26363.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sampath SC, Marazzi I, Yap KL, Krutchinsky AN, Mecklenbrauker I, Viale A et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 2007; 27: 596–608.

    CAS  PubMed  Google Scholar 

  168. Huang J, Dorsey J, Chuikov S, Perez-Burgos L, Zhang X, Jenuwein T et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 2010; 285: 9636–9641.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 2011; 147: 773–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee JM, Lee JS, Kim H, Kim K, Park H, Kim JY et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 2012; 48: 572–586.

    CAS  PubMed  Google Scholar 

  171. Kachirskaia I, Shi X, Yamaguchi H, Tanoue K, Wen H, Wang EW et al. Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J Biol Chem 2008; 283: 34660–34666.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M et al. p53 is regulated by the lysine demethylase LSD1. Nature 2007; 449: 105–108.

    CAS  PubMed  Google Scholar 

  173. Krajewski WA, Reese JC . SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species. Mol Cell Biol 2009; 30: 552–564.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author’s lab is supported by European Research Council Advanced Investigator Grant (ERC-2011-AdG294464) and the Greek Operational Program ‘Education and Lifelong Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales (Thales 656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Talianidis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarris, M., Nikolaou, K. & Talianidis, I. Context-specific regulation of cancer epigenomes by histone and transcription factor methylation. Oncogene 33, 1207–1217 (2014). https://doi.org/10.1038/onc.2013.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.87

Keywords

This article is cited by

Search

Quick links