Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Stress signaling and the shaping of the mammary tissue in development and cancer

Abstract

The postnatal mammary gland develops extensively through cycles of proliferation, branching, involution and remodeling. We review recent advances made in the field of stress signaling pathways and its roles in mammary gland organogenesis, how they contribute to normal organ specification and homeostasis and how its subversion by oncogenes leads to cancer. We analyze stress signaling in mammary gland biology taking into account the interrelationship with the extracellular matrix and adhesion signaling during morphogenesis. By integrating the information gathered from in vivo and three dimensional in vitro organogenesis studies, we review the novel contribution of p38SAPK, c-Jun NH2-terminal kinase and PKR-like endoplasmic reticulum kinase (PERK) signaling pathways to the timely activation of cell death, correct establishment of polarity and growth arrest and autophagy, respectively. We also review the evidence supporting that the activation of the aforementioned stress kinases maintain breast acinar structures as part of a tumor suppressive program and that its deregulation is commonplace during breast cancer initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007; 21: 1621–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 2000; 157: 2151–2159.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mandriota SJ, Buser R, Lesne L, Stouder C, Favaudon V, Maechler P et al. Ataxia telangiectasia mutated (ATM) inhibition transforms human mammary gland epithelial cells. J Biol Chem 2010; 285: 13092–13106.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sivaraman L, Conneely OM, Medina D, O'Malley BW . p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Natl Acad Sci USA 2001; 98: 12379–12384.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sequeira SJ, Ranganathan AC, Adam AP, Iglesias BV, Farias EF, Aguirre-Ghiso JA . Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation. PLoS One 2007; 2: e615.

    PubMed  PubMed Central  Google Scholar 

  6. Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ et al. p38alpha signaling induces anoikis and lumen formation during mammary morphogenesis. Sci Signal 2011; 4: ra34.

    PubMed  PubMed Central  Google Scholar 

  7. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci USA 2008; 105: 16314–16319.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 2011; 31: 3616–3629.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall HG, Farson DA, Bissell MJ . Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci USA 1982; 79: 4672–4676.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schedin P, Keely PJ . Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 2010; 3: a003228.

    Google Scholar 

  11. Bateman JF, Boot-Handford RP, Lamande SR . Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 2009; 10: 173–183.

    CAS  PubMed  Google Scholar 

  12. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436: 123–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ossowski L, Biegel D, Reich E . Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 1979; 16: 929–940.

    CAS  PubMed  Google Scholar 

  14. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT et al. Collagen density promotes mammary tumor initiation and progression. BMC Med 2008; 6: 11.

    PubMed  PubMed Central  Google Scholar 

  15. Lyons TR, O'Brien J, Borges VF, Conklin MW, Keely PJ, Eliceiri KW et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med 2011; 17: 1109–1115.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S et al. Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 1996; 122: 4013–4022.

    CAS  PubMed  Google Scholar 

  17. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS . The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 2002; 111: 29–40.

    CAS  PubMed  Google Scholar 

  18. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 2003; 5: 733–740.

    CAS  PubMed  Google Scholar 

  19. Martin-Belmonte F, Yu W, Rodriguez-Fraticelli AE, Ewald AJ, Werb Z, Alonso MA et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 2008; 18: 507–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jechlinger M, Podsypanina K, Varmus H . Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev 2009; 23: 1677–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lockshin RA, Zakeri Z . Cell death in health and disease. J Cell Mol Med 2007; 11: 1214–1224.

    PubMed  PubMed Central  Google Scholar 

  22. Kultz D . Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 2003; 206: 3119–3124.

    PubMed  Google Scholar 

  23. Smith ML, Fornace AJ Jr . Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res 1996; 340: 109–124.

    PubMed  Google Scholar 

  24. Bartek J, Lukas J . Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 2001; 13: 738–747.

    CAS  PubMed  Google Scholar 

  25. Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB . MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 2005; 17: 37–48.

    CAS  PubMed  Google Scholar 

  26. Seong YS, Kamijo K, Lee JS, Fernandez E, Kuriyama R, Miki T et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J Biol Chem 2002; 277: 32282–32293.

    Article  CAS  PubMed  Google Scholar 

  27. Takenaka K, Moriguchi T, Nishida E . Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998; 280: 599–602.

    CAS  PubMed  Google Scholar 

  28. del Barco Barrantes I, Nebreda AR . Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Trans 2012; 40: 79–84.

    CAS  PubMed  Google Scholar 

  29. Schroder M, Kaufman RJ . The mammalian unfolded protein response. Annu Rev Biochem 2005; 74: 739–789.

    PubMed  Google Scholar 

  30. Ellis RJ, Hartl FU . Principles of protein folding in the cellular environment. Curr Opin Struct Biol 1999; 9: 102–110.

    CAS  PubMed  Google Scholar 

  31. Feder ME, Hofmann GE . Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999; 61: 243–282.

    CAS  PubMed  Google Scholar 

  32. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027–1037.

    CAS  PubMed  Google Scholar 

  33. Rodier F, Campisi J, Bhaumik D . Two faces of p53: aging and tumor suppression. Nucleic Acids Res 2007; 35: 7475–7484.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP, Sgroi D et al. Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA 2010; 107: 4675–4680.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 2009; 28: 1505–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11: 191–205.

    CAS  PubMed  Google Scholar 

  37. Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J et al. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 2000; 14: 574–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA . The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999; 22: 667–676.

    CAS  PubMed  Google Scholar 

  39. Das M, Garlick DS, Greiner DL, Davis RJ . The role of JNK in the development of hepatocellular carcinoma. Genes Dev 2011; 25: 634–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Waetzig V, Herdegen T . A single c-Jun N-terminal kinase isoform (JNK3-p54) is an effector in both neuronal differentiation and cell death. J Biol Chem 2003; 278: 567–572.

    CAS  PubMed  Google Scholar 

  41. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF et al. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    CAS  Google Scholar 

  42. Li X, Qiu J, Wang J, Zhong Y, Zhu J, Chen Y . Corticosterone-induced rapid phosphorylation of p38 and JNK mitogen-activated protein kinases in PC12 cells. FEBS Lett 2001; 492: 210–214.

    CAS  PubMed  Google Scholar 

  43. Miller AL, Garza AS, Johnson BH, Thompson EB . Pathway interactions between MAPKs, mTOR, PKA, and the glucocorticoid receptor in lymphoid cells. Cancer Cell Int 2007; 7: 3.

    PubMed  PubMed Central  Google Scholar 

  44. Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R et al. p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 2005; 19: 1569–1583.

    CAS  PubMed  Google Scholar 

  45. Qi AQ, Qiu J, Xiao L, Chen YZ . Rapid activation of JNK and p38 by glucocorticoids in primary cultured hippocampal cells. J Neurosci Res 2005; 80: 510–517.

    CAS  PubMed  Google Scholar 

  46. Li S, Rosen JM . Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol Endocrinol 1994; 8: 1328–1335.

    CAS  PubMed  Google Scholar 

  47. Rosen JM, Zahnow C, Kazansky A, Raught B . Composite response elements mediate hormonal and developmental regulation of milk protein gene expression. Biochem Soc Symp 1998; 63: 101–113.

    CAS  PubMed  Google Scholar 

  48. Zettl KS, Sjaastad MD, Riskin PM, Parry G, Machen TE, Firestone GL . Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc Natl Acad Sci USA 1992; 89: 9069–9073.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Murtagh J, McArdle E, Gilligan E, Thornton L, Furlong F, Martin F . Organization of mammary epithelial cells into 3D acinar structures requires glucocorticoid and JNK signaling. J Cell Biol 2004; 166: 133–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cellurale C, Girnius N, Jiang F, Cavanagh-Kyros J, Lu S, Garlick DS et al. Role of JNK in mammary gland development and breast cancer. Cancer Res 2011; 72: 472–481.

    PubMed  PubMed Central  Google Scholar 

  51. Cellurale C, Weston CR, Reilly J, Garlick DS, Jerry DJ, Sluss HK et al. Role of JNK in a Trp53-dependent mouse model of breast cancer. PLoS One 2010; 5: e12469.

    PubMed  PubMed Central  Google Scholar 

  52. Almholt K, Green KA, Juncker-Jensen A, Nielsen BS, Lund LR, Romer J . Extracellular proteolysis in transgenic mouse models of breast cancer. J Mammary Gland Biol Neoplasia 2007; 12: 83–97.

    PubMed  PubMed Central  Google Scholar 

  53. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    CAS  PubMed  Google Scholar 

  54. Walter P, Ron D . The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081–1086.

    CAS  PubMed  Google Scholar 

  55. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7: 1153–1163.

    CAS  PubMed  Google Scholar 

  56. Liang G, Yang J, Wang Z, Li Q, Tang Y, Chen XZ . Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2alpha. Hum Mol Genet 2008; 17: 3254–3262.

    CAS  PubMed  Google Scholar 

  57. Wei J, Sheng X, Feng D, McGrath B, Cavener DR . PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 2008; 217: 693–707.

    CAS  PubMed  Google Scholar 

  58. Merksamer PI, Papa FR . The UPR and cell fate at a glance. J Cell Sci 2010; 123: 1003–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gupta S, Read DE, Deepti A, Cawley K, Gupta A, Oommen D et al. Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis 2012; 3: e333.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu CL, Li X, Hu GL, Li RJ, He YY, Zhong W et al. Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2alpha signaling pathway. J Geriatr Cardiol 2012; 9: 258–268.

    PubMed  PubMed Central  Google Scholar 

  61. Park MA, Zhang G, Martin AP, Hamed H, Mitchell C, Hylemon PB et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther 2008; 7: 1648–1662.

    CAS  PubMed  Google Scholar 

  62. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 2012; 19: 1880–1891.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Talukder AH, Wang RA, Kumar R . Expression and transactivating functions of the bZIP transcription factor GADD153 in mammary epithelial cells. Oncogene 2002; 21: 4289–4300.

    CAS  PubMed  Google Scholar 

  64. Mailleux AA, Overholtzer M, Schmelzle T, Bouillet P, Strasser A, Brugge JS . BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 2007; 12: 221–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J et al. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 2010; 5: e10240.

    PubMed  PubMed Central  Google Scholar 

  66. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461: 109–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010; 29: 3881–3895.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sequeira SJ, Wen HC, Avivar-Valderas A, Farias EF, Aguirre-Ghiso JA . Inhibition of eIF2alpha dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis. BMC Cell Biol 2009; 10: 64.

    PubMed  PubMed Central  Google Scholar 

  69. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 2006; 26: 9517–9532.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Avivar-Valderas A, Bobrovnikova-Marjon E, Alan Diehl J, Bardeesy N, Debnath J, Aguirre-Ghiso JA . Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 2013; 32: 4932–4940.

    CAS  PubMed  Google Scholar 

  71. Brewer JW, Diehl JA . PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 2000; 97: 12625–12630.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brewer JW, Hendershot LM, Sherr CJ, Diehl JA . Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci USA 1999; 96: 8505–8510.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Farmer SR, Ben-Ze'av A, Benecke BJ, Penman S . Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: reversal upon cell attachment to a surface. Cell 1978; 15: 627–637.

    CAS  PubMed  Google Scholar 

  74. Benecke BJ, Ben-Ze'ev A, Penman S . The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell 1978; 14: 931–939.

    CAS  PubMed  Google Scholar 

  75. Gorrini C, Loreni F, Gandin V, Sala LA, Sonenberg N, Marchisio PC et al. Fibronectin controls cap-dependent translation through beta1 integrin and eukaryotic initiation factors 4 and 2 coordinated pathways. Proc Natl Acad Sci USA 2005; 102: 9200–9205.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 2005; 24: 3470–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fung C, Lock R, Gao S, Salas E, Debnath J . Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 2008; 19: 797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    CAS  PubMed  Google Scholar 

  80. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999; 59: 59–65.

    CAS  PubMed  Google Scholar 

  81. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 2012; 122: 4621–4634.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res 2009; 69: 4415–4423.

    CAS  PubMed  Google Scholar 

  84. Park MA, Yacoub A, Sarkar D, Emdad L, Rahmani M, Spiegel S et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells. Autophagy 2008; 4: 513–515.

    CAS  PubMed  Google Scholar 

  85. Debnath J . Detachment-induced autophagy during anoikis and lumen formation in epithelial acini. Autophagy 2008; 4: 351–353.

    PubMed  Google Scholar 

  86. Schaeffer HJ, Weber MJ . Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19: 2435–2444.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Han J, Lee JD, Bibbs L, Ulevitch RJ . A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–811.

    CAS  PubMed  Google Scholar 

  88. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270: 7420–7426.

    CAS  PubMed  Google Scholar 

  89. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995; 364: 229–233.

    CAS  PubMed  Google Scholar 

  90. Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR . Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 1997; 235: 533–538.

    CAS  PubMed  Google Scholar 

  91. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell 2007; 128: 295–308.

    CAS  PubMed  Google Scholar 

  92. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 2002; 31: 210–215.

    CAS  PubMed  Google Scholar 

  93. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 2004; 36: 343–350.

    CAS  PubMed  Google Scholar 

  94. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 2002; 22: 3389–3403.

    PubMed  PubMed Central  Google Scholar 

  95. Mikhailov A, Patel D, McCance DJ, Rieder CL . The G2 p38-mediated stress-activated checkpoint pathway becomes attenuated in transformed cells. Curr Biol 2007; 17: 2162–2168.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lambros MB, Natrajan R, Geyer FC, Lopez-Garcia MA, Dedes KJ, Savage K et al. PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study. Mod Pathol 2010; 23: 1334–1345.

    CAS  PubMed  Google Scholar 

  97. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 2012; 493: 406–410.

    PubMed  PubMed Central  Google Scholar 

  98. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    CAS  PubMed  Google Scholar 

  99. Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, Nagasaki K et al. Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 2007; 27: 1730–1744.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dong J, Huang S, Caikovski M, Ji S, McGrath A, Custorio MG et al. ID4 regulates mammary gland development by suppressing p38MAPK activity. Development 2011; 138: 5247–5256.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Akaogi K, Ono W, Hayashi Y, Kishimoto H, Yanagisawa J . MYBBP1A suppresses breast cancer tumorigenesis by enhancing the p53 dependent anoikis. BMC Cancer 2013; 13: 65.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Danes CG, Wyszomierski SL, Lu J, Neal CL, Yang W, Yu D . 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res 2008; 68: 1760–1767.

    CAS  PubMed  Google Scholar 

  103. Ravid D, Maor S, Werner H, Liscovitch M . Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene 2005; 24: 1338–1347.

    CAS  PubMed  Google Scholar 

  104. Yazinski SA, Westcott PM, Ong K, Pinkas J, Peters RM, Weiss RS . Dual inactivation of Hus1 and p53 in the mouse mammary gland results in accumulation of damaged cells and impaired tissue regeneration. Proc Natl Acad Sci USA 2009; 106: 21282–21287.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D . Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5: 897–904.

    CAS  PubMed  Google Scholar 

  106. Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ et al. Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J 1995; 14: 5920–5930.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bruno RD, Smith GH . Reprogramming non-mammary and cancer cells in the developing mouse mammary gland. Semin Cell Dev Biol 2012; 23: 591–598.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim MS, Lee EJ, Kim HR, Moon A . p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res 2003; 63: 5454–5461.

    CAS  PubMed  Google Scholar 

  109. Mao L, Yuan L, Slakey LM, Jones FE, Burow ME, Hill SM . Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res 2010; 12: R107.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG et al. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol 2013; 15: 1351–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. O'Sullivan AW, Wang JH, Redmond HP . p38 MAP kinase inhibition promotes primary tumour growth via VEGF independent mechanism. World J Surg Oncol 2009; 7: 89.

    PubMed  PubMed Central  Google Scholar 

  112. Timofeev O, Lee TY, Bulavin DV . A subtle change in p38 MAPK activity is sufficient to suppress in vivo tumorigenesis. Cell Cycle 2005; 4: 118–120.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant from Samuel Waxman Cancer Research Foundation Tumor Dormancy Program, NIH/National Cancer Institute (CA109182, CA163131), NIEHS (ES017146) and NYSTEM to JAA-G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Avivar-Valderas, H C Wen or J A Aguirre-Ghiso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avivar-Valderas, A., Wen, H. & Aguirre-Ghiso, J. Stress signaling and the shaping of the mammary tissue in development and cancer. Oncogene 33, 5483–5490 (2014). https://doi.org/10.1038/onc.2013.554

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.554

Keywords

This article is cited by

Search

Quick links