Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination

Abstract

Inhibition of type 1 insulin-like growth factor receptor (IGF-1R) enhances tumor cell sensitivity to ionizing radiation. It is not clear how this effect is mediated, nor whether this approach can be applied effectively in the clinic. We previously showed that IGF-1R depletion delays repair of radiation-induced DNA double-strand breaks (DSBs), unlikely to be explained entirely by reduction in homologous recombination (HR) repair. The current study tested the hypothesis that IGF-1R inhibition induces a repair defect that involves non-homologous end joining (NHEJ). IGF-1R inhibitor AZ12253801 blocked cell survival and radiosensitized IGF-1R-overexpressing murine fibroblasts but not isogenic IGF-1R-null cells, supporting specificity for IGF-1R. IGF-1R inhibition enhanced radiosensitivity in DU145, PC3 and 22Rv1 prostate cancer cells, comparable to effects of Ataxia Telangiectasia Mutated inhibition. AZ12253801-treated DU145 cells showed delayed resolution of γH2AX foci, apparent within 1 h of irradiation and persisting for 24 h. In contrast, IGF-1R inhibition did not influence radiosensitivity or γH2AX focus resolution in LNCaP-LN3 cells, suggesting that radiosensitization tracks with the ability of IGF-1R to influence DSB repair. To differentiate effects on repair from growth and cell-survival responses, we tested AZ12253801 in DU145 cells at sub-SF50 concentrations that had no early (48 h) effects on cell cycle distribution or apoptosis induction. Irradiated cultures contained abnormal mitoses, and after 5 days IGF-1R-inhibited cells showed enhanced radiation-induced polyploidy and nuclear fragmentation, consistent with the consequences of entry into mitosis with incompletely repaired DNA. AZ12253801 radiosensitized DNA-dependent protein kinase (DNA-PK)-proficient but not DNA-PK-deficient glioblastoma cells, and did not radiosensitize DNA-PK-inhibited DU145 cells, suggesting that in the context of DSB repair, IGF-1R functions in the same pathway as DNA-PK. Finally, IGF-1R inhibition attenuated repair by both NHEJ and HR in HEK293 reporter assays. These data indicate that IGF-1R influences DSB repair by both major DSB repair pathways, findings that may inform clinical application of this approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rochester MA, Riedemann J, Hellawell GO, Brewster SF, Macaulay VM . Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther 2005; 12: 90–100.

    Article  CAS  PubMed  Google Scholar 

  2. Riesterer O, Yang Q, Raju U, Torres M, Molkentine D, Patel N et al. Combination of anti-IGF-1R antibody A12 and ionizing radiation in upper respiratory tract cancers. Int J Radiat Oncol Biol Phys 2011; 79: 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  3. Isebaert SF, Swinnen JV, McBride WH, Haustermans KM . Insulin-like growth factor-type 1 receptor inhibitor NVP-AEW541 enhances radiosensitivity of PTEN wild-type but not PTEN-deficient human prostate cancer cells. Int J Radiat Oncol Biol Phys 2011; 81: 239–247.

    Article  CAS  PubMed  Google Scholar 

  4. Ferte C, Loriot Y, Clemenson C, Commo F, Gombos A, Bibault JE et al. IGF-1R targeting increases the antitumor effects of DNA damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy. Mol Cancer Ther 2013; 12: 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Molife LR, Fong PC, Paccagnella L, Reid AH, Shaw HM, Vidal L et al. The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br J Cancer 2010; 103: 332–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Javle MM, Varadhachary GR, Fogelman DR, Shroff RT, Overman MJ, Ukegbu L et al. Randomized phase II study of gemcitabine (G) plus anti-IGF-1R antibody MK-0646, G plus erlotinib (E) plus MK-0646 and G plus E for advanced pancreatic cancer. J Clin Oncol 2011; 29 (suppl)abstr 4026.

    Article  Google Scholar 

  7. Yee D . Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst 2012; 104: 975–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM . Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002; 62: 2942–2950.

    CAS  PubMed  Google Scholar 

  9. Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Burfeind P . Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. J Pathol 2004; 202: 50–59.

    Article  CAS  PubMed  Google Scholar 

  10. Krueckl SL, Sikes RA, Edlund NM, Bell RH, Hurtado-Coll A, Fazli L et al. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res 2004; 64: 8620–8629.

    Article  CAS  PubMed  Google Scholar 

  11. Liao Y, Abel U, Grobholz R, Hermani A, Trojan L, Angel P et al. Up-regulation of insulin-like growth factor axis components in human primary prostate cancer correlates with tumor grade. Hum Pathol 2005; 36: 1186–1196.

    Article  CAS  PubMed  Google Scholar 

  12. Sroka IC, McDaniel K, Nagle RB, Bowden GT . Differential localization of MT1-MMP in human prostate cancer tissue: role of IGF-1R in MT1-MMP expression. Prostate 2008; 68: 463–476.

    Article  CAS  PubMed  Google Scholar 

  13. Turney BW, Kerr M, Chitnis MM, Lodhia K, Wang Y, Riedemann J et al. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks. Radiother Oncol 2012; 103: 402–409.

    Article  CAS  PubMed  Google Scholar 

  14. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 2010; 70: 6412–6419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaw PH, Maughan TS, Clarke AR . Dual inhibition of epidermal growth factor and insulin-like 1 growth factor receptors reduce intestinal adenoma burden in the Apc(min/+) mouse. Br J Cancer 2011; 105: 649–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T et al. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994; 14: 3604–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tezuka M, Watanabe H, Nakamura S, Yu D, Aung W, Sasaki T et al. Antiapoptotic activity is dispensable for insulin-like growth factor I receptor-mediated clonogenic radioresistance after gamma-irradiation. Clin Cancer Res 2001; 7: 3206–3214.

    CAS  PubMed  Google Scholar 

  19. Reiss K, Wang JY, Romano G, Furnari FB, Cavenee WK, Morrione A et al. IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene 2000; 19: 2687–2694.

    Article  CAS  PubMed  Google Scholar 

  20. McConkey DJ, Greene G, Pettaway CA . Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. Cancer Res 1996; 56: 5594–5599.

    CAS  PubMed  Google Scholar 

  21. Kurmasheva RT, Houghton PJ . IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 2006; 1766: 1–22.

    CAS  PubMed  Google Scholar 

  22. Dupont J, Holzenberger M . IGF type 1 receptor: a cell cycle progression factor that regulates aging. Cell Cycle 2003; 2: 270–272.

    Article  CAS  PubMed  Google Scholar 

  23. Bowen C, Birrer M, Gelmann EP . Retinoblastoma protein-mediated apoptosis after gamma-irradiation. J Biol Chem 2002; 277: 44969–44979.

    Article  CAS  PubMed  Google Scholar 

  24. Kuemmerle JF, Zhou H, Bowers JG . IGF-I stimulates human intestinal smooth muscle cell growth by regulation of G1 phase cell cycle proteins. Am J Physiol Gastrointest Liver Physiol 2004; 286: G412–G419.

    Article  CAS  PubMed  Google Scholar 

  25. Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL et al. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 2005; 11: 3065–3074.

    Article  CAS  PubMed  Google Scholar 

  26. Flanigan SA, Pitts TM, Eckhardt SG, Tentler JJ, Tan AC, Thorburn A et al. The insulin-like growth factor I receptor/insulin receptor tyrosine kinase inhibitor PQIP exhibits enhanced antitumor effects in combination with chemotherapy against colorectal cancer models. Clin Cancer Res 2010; 16: 5436–5446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bielen A, Box G, Perryman L, Bjerke L, Popov S, Jamin Y et al. Dependence of Wilms tumor cells on signaling through insulin-like growth factor 1 in an orthotopic xenograft model targetable by specific receptor inhibition. Proc Natl Acad Sci USA 2012; 109: E1267–E1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH . Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair 2005; 4: 782–792.

    Article  CAS  PubMed  Google Scholar 

  29. Shrivastav M, De Haro LP, Nickoloff JA . Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18: 134–147.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang R, Adams PD . Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle 2007; 6: 784–789.

    Article  CAS  PubMed  Google Scholar 

  31. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31: 167–177.

    Article  CAS  PubMed  Google Scholar 

  32. Sprenger CC, Vail ME, Evans K, Simurdak J, Plymate SR . Over-expression of insulin-like growth factor binding protein-related protein-1(IGFBP-rP1/mac25) in the M12 prostate cancer cell line alters tumor growth by a delay in G1 and cyclin A associated apoptosis. Oncogene 2002; 21: 140–147.

    Article  CAS  PubMed  Google Scholar 

  33. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 2010; 141: 717–727.

    Article  CAS  PubMed  Google Scholar 

  34. Ewald JA, Desotelle JA, Wilding G, Jarrard DF . Therapy-induced senescence in cancer. J Natl Cancer Inst 2010; 102: 1536–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steiner MS, Zhang Y, Farooq F, Lerner J, Wang Y, Lu Y . Adenoviral vector containing wild-type p16 suppresses prostate cancer growth and prolongs survival by inducing cell senescence. Cancer Gene Ther 2000; 7: 360–372.

    Article  CAS  PubMed  Google Scholar 

  36. Vakifahmetoglu H, Olsson M, Zhivotovsky B . Death through a tragedy: mitotic catastrophe. Cell Death Differ 2008; 15: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  37. Wouters BG . Cell Death After Irradiation: How, When and Why Cells Die 4th Edn-Great Britain (ed) Hodder Arnold, London UK, 2009).

    Book  Google Scholar 

  38. Trojanek J, Ho T, Del Valle L, Nowicki M, Wang JY, Lassak A et al. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol 2003; 23: 7510–7524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R, Dricu A . Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 2007; 26: 2423–2434.

    Article  CAS  PubMed  Google Scholar 

  40. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 2010; 9: 662–669.

    Article  PubMed  Google Scholar 

  41. Ward IM, Chen J . Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 2001; 276: 47759–47762.

    Article  CAS  PubMed  Google Scholar 

  42. Solier S, Pommier Y . The apoptotic ring: a novel entity with phosphorylated histones H2AX and H2B and activated DNA damage response kinases. Cell Cycle 2009; 8: 1853–1859.

    Article  CAS  PubMed  Google Scholar 

  43. Solier S, Pommier Y . MDC1 cleavage by caspase-3: a novel mechanism for inactivating the DNA damage response during apoptosis. Cancer Res 2011; 71: 906–913.

    Article  CAS  PubMed  Google Scholar 

  44. Wang B, Matsuoka S, Carpenter PB, Elledge SJ . 53BP1, a mediator of the DNA damage checkpoint. Science 2002; 298: 1435–1438.

    Article  CAS  PubMed  Google Scholar 

  45. Macaulay VM, Salisbury AJ, Bohula EA, Playford MP, Smorodinsky NI, Shiloh Y . Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase. Oncogene 2001; 20: 4029–4040.

    Article  CAS  PubMed  Google Scholar 

  46. Jeon JH, Kim SK, Kim HJ, Chang J, Ahn CM, Chang YS . Insulin-like growth factor-1 attenuates cisplatin-induced gammaH2AX formation and DNA double-strand breaks repair pathway in non-small cell lung cancer. Cancer Lett 2008; 272: 232–241.

    Article  CAS  PubMed  Google Scholar 

  47. Rothkamm K, Kruger I, Thompson LH, Lobrich M . Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003; 23: 5706–5715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Polo SE, Jackson SP . Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25: 409–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allalunis-Turner MJ, Zia PK, Barron GM, Mirzayans R, Day RS 3rd . Radiation-induced DNA damage and repair in cells of a radiosensitive human malignant glioma cell line. Radiat Res 1995; 144: 288–293.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 2006; 66: 5354–5362.

    Article  CAS  PubMed  Google Scholar 

  51. Bennardo N, Cheng A, Huang N, Stark JM . Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 2008; 4: e1000110.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med 2011; 17: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Litzenburger BC, Creighton CJ, Tsimelzon A, Chan BT, Hilsenbeck SG, Wang T et al. High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clin Cancer Res 2011; 17: 2314–2327.

    Article  CAS  PubMed  Google Scholar 

  54. Fabbri F, Amadori D, Carloni S, Brigliadori G, Tesei A, Ulivi P et al. Mitotic catastrophe and apoptosis induced by docetaxel in hormone-refractory prostate cancer cells. J Cell Physiol 2008; 217: 494–501.

    Article  CAS  PubMed  Google Scholar 

  55. Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 2009; 8: 3341–3349.

    Article  CAS  PubMed  Google Scholar 

  56. Gonzalez-Vasconcellos I, Anastasov N, Sanli-Bonazzi B, Klymenko O, Atkinson MJ, Rosemann M . Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability. Cancer Res 2013; 73: 4247–4255.

    Article  CAS  PubMed  Google Scholar 

  57. Xu N, Lao Y, Zhang Y, Gillespie DA . Akt: a double-edged sword in cell proliferation and genome stability. J Oncol 2012; 2012: 951724.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lloret M, Lara PC, Bordon E, Fontes F, Rey A, Pinar B et al. Major vault protein may affect nonhomologous end-joining repair and apoptosis through Ku70/80 and bax downregulation in cervical carcinoma tumors. Int J Radiat Oncol Biol Phys 2009; 73: 976–979.

    Article  PubMed  Google Scholar 

  59. Valenciano A, Henriquez-Hernandez LA, Moreno M, Lloret M, Lara PC . Role of IGF-1 receptor in radiation response. Trans Oncol 2012; 5: 1–9.

    Article  Google Scholar 

  60. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 2010; 3: ra10.

    Article  PubMed  Google Scholar 

  61. Sarfstein R, Pasmanik-Chor M, Yeheskel A, Edry L, Shomron N, Warman N et al. Insulin-like growth factor-I receptor (IGF-IR) translocates to nucleus and autoregulates IGF-IR gene expression in breast cancer cells. J Biol Chem 2012; 287: 2766–2776.

    Article  CAS  PubMed  Google Scholar 

  62. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 2005; 280: 31182–31189.

    Article  CAS  PubMed  Google Scholar 

  63. Kornmann M, Arber N, Korc M . Inhibition of basal and mitogen-stimulated pancreatic cancer cell growth by cyclin D1 antisense is associated with loss of tumorigenicity and potentiation of cytotoxicity to cisplatinum. J Clin Invest 1998; 101: 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 2011; 474: 230–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yata K, Esashi F . Dual role of CDKs in DNA repair: to be, or not to be. DNA Repair 2009; 8: 6–18.

    Article  CAS  PubMed  Google Scholar 

  66. Bolderson E, Richard DJ, Zhou BB, Khanna KK . Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 2009; 15: 6314–6320.

    Article  CAS  PubMed  Google Scholar 

  67. Harrington KJ, Billingham LJ, Brunner TB, Burnet NG, Chan CS, Hoskin P et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 2011; 105: 628–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts DJ, Spellman RA, Sanok K, Chen H, Chan M, Yurt P et al. Interlaboratory assessment of mitotic index by flow cytometry confirms superior reproducibility relative to microscopic scoring. Environ Mol Mutagen 2012; 53: 297–303.

    Article  CAS  PubMed  Google Scholar 

  69. Sramkoski RM, Pretlow TG 2nd, Giaconia JM, Pretlow TP, Schwartz S, Sy MS et al. A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 1999; 35: 403–409.

    Article  CAS  PubMed  Google Scholar 

  70. Fraser M, Zhao H, Luoto KR, Lundin C, Coackley C, Chan N et al. PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res 2012; 18: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  71. Lehmann BD, McCubrey JA, Jefferson HS, Paine MS, Chappell WH, Terrian DM . A dominant role for p53-dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle 2007; 6: 595–605.

    Article  CAS  PubMed  Google Scholar 

  72. Scott SL, Earle JD, Gumerlock PH . Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation. Cancer Res 2003; 63: 7190–7196.

    CAS  PubMed  Google Scholar 

  73. Mujoo K, Watanabe M, Khokhar AR, Siddik ZH . Increased sensitivity of a metastatic model of prostate cancer to a novel tetravalent platinum analog. Prostate 2005; 62: 91–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIHR Oxford Biomedical Research Centre, Molecular and Cellular Medicine Board of the MRC, Cancer Research UK Clinical Research Fellowship to MMC, Prostate Cancer UK support to KL and TA, NIHR Research Capability Funding to KL, Breast Cancer Campaign for support to SG and HEFCE Clinical Senior Lectureship to VMM. We are grateful to Elaine Kilgour and Elizabeth Anderson at AstraZeneca for providing AZ12253801; Walter Bodmer for LNCaP-LN3 cells; Renato Baserga for R+ and R− cells; Dr Anne Kiltie for M059J and M059K cells; Jeremy Stark and Wojciech Niedzwiedz for HEK293 EJ5-GFP/TST and HEK293 DR-GFP/TST cells; Olga Perestenko for primary renal cancer cells; and Peter McHugh and Tim Humphrey for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V M Macaulay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitnis, M., Lodhia, K., Aleksic, T. et al. IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination. Oncogene 33, 5262–5273 (2014). https://doi.org/10.1038/onc.2013.460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.460

Keywords

This article is cited by

Search

Quick links