Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Helicobacter pylori generates cells with cancer stem cell properties via epithelial–mesenchymal transition-like changes

Abstract

Helicobacter pylori infection is the major risk factor for gastric adenocarcinoma. The link with gastric adenocarcinoma is partly due to the H. pylori CagA oncoprotein. CagA is responsible for a particular cell phenotype in vitro, the ‘hummingbird’ phenotype, that corresponds to an elongation of the cells, mimicking an epithelial–mesenchymal transition (EMT). EMT participates in the carcinogenesis process, and is involved in the generation of cancer stem cells (CSCs). However, its involvement in gastric carcinogenesis has yet not been studied. Therefore, the aim of this study was to determine the role of H. pylori in EMT and in the emergence of gastric CSCs. For this purpose, gastric epithelial cells were cocultured with a cagA-positive H. pylori strain or its isogenic-deleted mutants or were transfected with CagA expression vectors. Study of the expression of epithelial and mesenchymal markers showed that H. pylori, via CagA, is responsible for an EMT phenotype associated with an increase in mesenchymal markers as well as CD44 expression, a known gastric CSC marker. Moreover, infection led to an increased ability to migrate, to invade and to form tumorspheres. Cell sorting experiments showed that only the CD44high cells induced by H. pylori infection displayed the mesenchymal phenotype and CSC properties in vitro, and had higher tumorigenic properties than CD44low cells in xenografted mice. Immunohistochemistry analyses on human and mouse gastric mucosa tissue samples confirmed a high expression of CD44 and mesenchymal markers in H. pylori-infected cases, and in gastric dysplasia and carcinoma. All of these data suggest that H. pylori, via CagA, unveils CSC-like properties by induction of EMT-like changes in gastric epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. IARC'Working'Group Schistosomes, liver flukes and Helicobacter pylori:Views and expert opinion of IARC Working Group on the evaluation of carcinogenic risks to humans. IARC Monographs (International Agency for Research on Cancer), Lyon, France, 1994; 61: 177–240.

  2. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH et al. Infection with Helicobacter pylori strains possessing CagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995; 55: 2111–2115.

    CAS  PubMed  Google Scholar 

  3. Gwack J, Shin A, Kim CS, Ko KP, Kim Y, Jun JK et al. CagA-producing Helicobacter pylori and increased risk of gastric cancer: a nested case-control study in Korea. Br J Cancer 2006; 95: 639–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 2007; 26: 4617–4626.

    Article  CAS  PubMed  Google Scholar 

  5. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S . Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 2003; 300: 1430–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Backert S, Selbach M . Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 2008; 10: 1573–1581.

    Article  CAS  PubMed  Google Scholar 

  7. Guarino M, Rubino B, Ballabio G . The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007; 39: 305–318.

    Article  CAS  PubMed  Google Scholar 

  8. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS One 2008; 3: e2888.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bellizzi A, Sebastian S, Ceglia P, Centonze M, Divella R, Manzillo EF et al. Co-expression of CD133(+) /CD44(+) in human colon cancer and liver metastasis. J Cell Physiol 2012; 228: 408–15s.

    Article  Google Scholar 

  12. Hao J, Madigan MC, Khatri A, Power CA, Hung TT, Beretov J et al. In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PloS One 2012; 7: e40716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwata T . Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol 2012; 41: 1314–1324.

    Article  PubMed  Google Scholar 

  14. Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E et al. CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis 2012; 29: 939–948.

    Article  CAS  PubMed  Google Scholar 

  15. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  CAS  PubMed  Google Scholar 

  16. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  17. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL . Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 2011; 30: 3186–3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009; 27: 1006–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T et al. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 2009; 26: 433–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li C, Lee CJ, Simeone DM . Identification of human pancreatic cancer stem cells. Methods Mol Biol 2009; 568: 161–173.

    Article  CAS  PubMed  Google Scholar 

  21. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004; 5: 1166–1174.

    Article  CAS  PubMed  Google Scholar 

  22. Mitsuno Y, Yoshida H, Maeda S, Ogura K, Hirata Y, Kawabe T et al. Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut 2001; 49: 18–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saito Y, Murata-Kamiya N, Hirayama T, Ohba Y, Hatakeyama M . Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J Exp Med 2010; 207: 2157–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varon C, Dubus P, Mazurier F, Asencio C, Chambonnier L, Ferrand J et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice. Gastroenterology 2012; 142: 281–291.

    Article  PubMed  Google Scholar 

  25. Baud J, Varon C, Chabas S, Chambonnier L, Darfeuille F, Staedel C . Helicobacter pylori initiates a mesenchymal transition through ZEB1 in gastric epithelial cells. PloS One 2013; 8: e60315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin Y, Grabowska AM, Clarke PA, Whelband E, Robinson K, Argent RH et al. Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 2010; 59: 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  27. Backert S, Moese S, Selbach M, Brinkmann V, Meyer TF . Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 2001; 42: 631–644.

    Article  CAS  PubMed  Google Scholar 

  28. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA 2008; 105: 1003–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Article  PubMed  Google Scholar 

  30. Varon C, Duriez A, Lehours P, Menard A, Laye S, Zerbib F et al. Study of Helicobacter pullorum proinflammatory properties on human epithelial cells in vitro. Gut 2009; 58: 629–635.

    Article  CAS  PubMed  Google Scholar 

  31. Franco AT, Johnston E, Krishna U, Yamaoka Y, Israel DA, Nagy TA et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res 2008; 68: 379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferrand J, Lehours P, Schmid-Alliana A, Mégraud F, Varon C . Helicobacter pylori infection of gastrointestinal epithelial cells in vitro induces mesenchymal stem cell migration through an NF-kappaB-dependent pathway. PloS One 2011; 6: e29007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 2002; 295: 683–686.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the French ‘Association pour la Recherche contre le Cancer’ (grant number 8412), ‘Institut du Cancer’ (grant number 07/3D1616/IABC-23-12/NC-NG), ‘Conseil Regional d’Aquitaine’ (grant number 20071301017 and 20081302203). We thank D Collet (Digestive Surgery of Hospital Haut-Lévèque, University Hospital Center of Bordeaux, France) and Professor JP Merlio (Tumor Bank of University Hospital Center of Bordeaux, France) for providing human gastric tissue samples from consenting patients. We thank A Giese (EA2406, Bordeaux, France), B Rousseau (level 2 animal facilities, Université de Bordeaux), V Pitard and S Gonzalez (cytometry platform, Université de Bordeaux), A Ménard, M Alibert, E Siffre and L Biguet for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Bessède.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessède, E., Staedel, C., Acuña Amador, L. et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial–mesenchymal transition-like changes. Oncogene 33, 4123–4131 (2014). https://doi.org/10.1038/onc.2013.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.380

Keywords

This article is cited by

Search

Quick links