Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The telomere profile distinguishes two classes of genetically distinct cutaneous squamous cell carcinomas

Abstract

The incidence of skin cancer is increasing worldwide and cutaneous squamous cell carcinomas (SCCs) are associated with considerable morbidity and mortality, particularly in immunosuppressed individuals (‘carcinomatous catastrophy’). Yet, molecular mechanisms are still insufficiently understood. Besides ultraviolet (UV)-indicative mutations, chromosomal aberrations are prominent. As telomeres are essential in preserving chromosome integrity, and telomere erosion as well as aberrant spatial telomere distribution contribute to genomic instability, we first established telomere length profiles across the whole tissue and identified normal skin (10/30) harboring discrete epidermal sites (stem cell territories) of evenly short telomeres. Precancerous actinic keratoses (AKs) (17) and SCCs (27) expressed two telomere phenotypes: (i) tissue-wide evenly short to intermediate and (ii) longer and tissue-wide heterogeneous telomere lengths, suggesting two modes of initiation, with one likely to originate in the epidermal stem cells. Although tumor histotype, location, patient gender or age failed to distinguish the two SCC telomere phenotypes, as did telomerase activity, we found a trend for a higher degree of aberrant p53 and cyclin D1 expression with long/heterogeneous telomeres. In addition, we established an association for the short/homogeneous telomeres with a simpler and the heterogeneous telomeres with a more complex karyotype correlating also with distinct chromosomal changes. SCCs (13) from renal transplant recipients displayed the same telomere dichotomy, suggesting that both telomere subtypes contribute to ‘carcinomatous catastrophy’ under immunosuppression by selecting for a common set (3, 9p and 17q) and subtype-specific aberrations (e.g., 6p gain, 13q loss). As a second mechanism of telomere-dependent genomic instability, we investigated changes in telomere distribution with its most severe form of telomeric aggregates (TAs). We identified a telomere length-independent but progression-dependent increase in cells with small telomere associations in AKs (17/17) and additional TAs in SCCs (24/32), basal cell carcinomas (30/31) and malignant melanomas (15/15), and provide evidence for a reactive oxygen species-dependent mechanism in this UV-induced telomere organization-dependent genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Euvrard S, Kanitakis J, Claudy A . Skin cancers after organ transplantation. N Engl J Med 2003; 348: 1681–1691.

    Article  Google Scholar 

  2. de Fijter JW . Use of proliferation signal inhibitors in non-melanoma skin cancer following renal transplantation. Nephrol Dial Transplant 2007; 22 (Suppl 1): i23–i26.

    Article  CAS  Google Scholar 

  3. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    Article  CAS  Google Scholar 

  4. Boukamp P . Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 2005; 26: 1657–1667.

    Article  CAS  Google Scholar 

  5. Burnworth B, Arendt S, Muffler S, Steinkraus V, Brocker EB, Birek C et al. The multi-step process of human skin carcinogenesis: a role for p53, cyclin D1, hTERT, p16, and TSP-1. Eur J Cell Biol 2007; 86: 763–780.

    Article  CAS  Google Scholar 

  6. Pacifico A, Goldberg LH, Peris K, Chimenti S, Leone G, Ananthaswamy HN . Loss of CDKN2A and p14ARF expression occurs frequently in human nonmelanoma skin cancers. Br J Dermatol 2008; 158: 291–297.

    Article  CAS  Google Scholar 

  7. Kanellou P, Zaravinos A, Zioga M, Stratigos A, Baritaki S, Soufla G et al. Genomic instability, mutations and expression analysis of the tumour suppressor genes p14(ARF), p15(INK4b), p16(INK4a) and p53 in actinic keratosis. Cancer Lett 2008; 264: 145–161.

    Article  CAS  Google Scholar 

  8. Burnworth B, Popp S, Stark HJ, Steinkraus V, Brocker EB, Hartschuh W et al. Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation. Oncogene 2006; 25: 4399–4412.

    Article  CAS  Google Scholar 

  9. Utikal J, Udart M, Leiter U, Kaskel P, Peter RU, Krahn G . Numerical abnormalities of the Cyclin D1 gene locus on chromosome 11q13 in non-melanoma skin cancer. Cancer Lett 2005; 219: 197–204.

    Article  CAS  Google Scholar 

  10. Toll A, Salgado R, Yebenes M, Martin-Ezquerra G, Gilaberte M, Baro T et al. MYC gene numerical aberrations in actinic keratosis and cutaneous squamous cell carcinoma. Br J Dermatol 2009; 161: 1112–1118.

    Article  CAS  Google Scholar 

  11. Jin Y, Martins C, Jin C, Salemark L, Jonsson N, Persson B et al. Nonrandom karyotypic features in squamous cell carcinomas of the skin. Genes Chromosomes Cancer 1999; 26: 295–303.

    Article  CAS  Google Scholar 

  12. Popp S, Waltering S, Herbst C, Moll I, Boukamp P . UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int J Cancer 2002; 99: 352–360.

    Article  CAS  Google Scholar 

  13. Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Raghavan M et al. Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer 2007; 46: 661–669.

    Article  CAS  Google Scholar 

  14. Purdie KJ, Harwood CA, Gulati A, Chaplin T, Lambert SR, Cerio R et al. Single nucleotide polymorphism array analysis defines a specific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol 2009; 129: 1562–1568.

    Article  CAS  Google Scholar 

  15. Salgado R, Toll A, Espinet B, Gonzalez-Roca E, Barranco CL, Serrano S et al. Analysis of cytogenetic abnormalities in squamous cell carcinoma by array comparative genomic hybridization. Acta Dermosifiliogr 2008; 99: 199–206.

    Article  CAS  Google Scholar 

  16. Dworkin AM, Ridd K, Bautista D, Allain DC, Iwenofu OH, Roy R et al. Germline variation controls the architecture of somatic alterations in tumors. PLoS Genet 2010; 6: e1001136.

    Article  Google Scholar 

  17. Desmaze C, Soria JC, Freulet-Marriere MA, Mathieu N, Sabatier L . Telomere-driven genomic instability in cancer cells. Cancer Lett 2003; 194: 173–182.

    Article  CAS  Google Scholar 

  18. Lansdorp PM . Telomeres and disease. EMBO J 2009; 28: 2532–2540.

    Article  CAS  Google Scholar 

  19. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372: 773–776.

    Article  CAS  Google Scholar 

  20. Ermler S, Krunic D, Knoch TA, Moshir S, Mai S, Greulich-Bode KM et al. Cell cycle-dependent 3D distribution of telomeres and telomere repeat-binding factor 2 (TRF2) in HaCaT and HaCaT-myc cells. Eur J Cell Biol 2004; 83: 681–690.

    Article  CAS  Google Scholar 

  21. Chuang TC, Moshir S, Garini Y, Chuang AY, Young IT, Vermolen B et al. The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol 2004; 2: 12.

    Article  Google Scholar 

  22. Louis SF, Vermolen BJ, Garini Y, Young IT, Guffei A, Lichtensztejn Z et al. c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci USA 2005; 102: 9613–9618.

    Article  CAS  Google Scholar 

  23. Murnane JP . Telomere dysfunction and chromosome instability. Mutat Res 2012; 730: 28–36.

    Article  CAS  Google Scholar 

  24. Krunic D, Moshir S, Greulich-Bode KM, Figueroa R, Cerezo A, Stammer H et al. Tissue context-activated telomerase in human epidermis correlates with little age-dependent telomere loss. Biochim Biophys Acta 2009; 1792: 297–308.

    Article  CAS  Google Scholar 

  25. Perrem K, Lynch A, Al NF, Leader M, Elaine K . The different telomere lengths in basal and squamous cell carcinomas also differ between the nontransplant and renal transplant population. Hum Pathol 2008; 39: 1034–1041.

    Article  CAS  Google Scholar 

  26. Shay JW, Wright WE . Ageing and cancer: the telomere and telomerase connection. Novartis Found Symp 2001; 235: 116–125.

    CAS  PubMed  Google Scholar 

  27. Bachor C, Bachor OA, Boukamp P . Telomerase is active in normal gastrointestinal mucosa and not up-regulated in precancerous lesions. J Cancer Res Clin Oncol 1999; 125: 453–460.

    Article  CAS  Google Scholar 

  28. Perrem K, Lynch A, Conneely M, Wahlberg H, Murphy G, Leader M et al. The higher incidence of squamous cell carcinoma in renal transplant recipients is associated with increased telomere lengths. Hum Pathol 2007; 38: 351–358.

    Article  CAS  Google Scholar 

  29. Fabricius EM, Kruse-Boitschenko U, Khoury R, Wildner GP, Raguse JD, Klein M et al. Localization of telomerase hTERT protein in frozen sections of basal cell carcinomas (BCC) and tumor margin tissues. Int J Oncol 2009; 35: 1377–1394.

    Article  CAS  Google Scholar 

  30. Ren ZP, Ahmadian A, Ponten F, Nister M, Berg C, Lundeberg J et al. Benign clonal keratinocyte patches with p53 mutations show no genetic link to synchronous squamous cell precancer or cancer in human skin. Am J Pathol 1997; 150: 1791–1803.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–821.

    Article  CAS  Google Scholar 

  32. Jones MJ, Jallepalli PV . Chromothripsis: chromosomes in crisis. Dev Cell 2012; 23: 908–917.

    Article  CAS  Google Scholar 

  33. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–771.

    Article  CAS  Google Scholar 

  34. Lehman TA, Modali R, Boukamp P, Stanek J, Bennett WP, Welsh JA et al. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 1993; 14: 833–839.

    Article  CAS  Google Scholar 

  35. Cerezo A, Kalthoff H, Schuermann M, Schafer B, Boukamp P . Dual regulation of telomerase activity through c-Myc-dependent inhibition and alternative splicing of hTERT. J Cell Sci 2002; 115: 1305–1312.

    CAS  Google Scholar 

  36. Geigl JB, Uhrig S, Speicher MR . Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat Protoc 2006; 1: 1172–1184.

    Article  CAS  Google Scholar 

  37. Armanios M, Blackburn EH . The telomere syndromes. Nat Rev Genet 2012; 13: 693–704.

    Article  CAS  Google Scholar 

  38. Xu L, Li S, Stohr BA . The role of telomere biology in cancer. Annu Rev Pathol 2012; 8: 49–78.

    Article  Google Scholar 

  39. Zimmer C, Fabre E . Principles of chromosomal organization: lessons from yeast. J Cell Biol 2011; 192: 723–733.

    Article  CAS  Google Scholar 

  40. Raz V, Vermolen BJ, Garini Y, Onderwater JJ, Mommaas-Kienhuis MA, Koster AJ et al. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci 2008; 121: 4018–4028.

    Article  CAS  Google Scholar 

  41. Balasubramanian S, Hurley LH, Neidle S . Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 2011; 10: 261–275.

    Article  CAS  Google Scholar 

  42. du Manoir S, Speicher MR, Joos S, Schrock E, Popp S, Dohner H et al. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 1993; 90: 590–610.

    Article  CAS  Google Scholar 

  43. Boukamp P, Popp S, Altmeyer S, Hulsen A, Fasching C, Cremer T et al. Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes Chromosomes Cancer 1997; 19: 201–214.

    Article  CAS  Google Scholar 

  44. Harle-Bachor C, Boukamp P . Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA 1996; 93: 6476–6481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Angelika Lampe for her help in preparing the manuscript, Manuel Berning for constructive discussions and Iris Martin and Katrin Schmidt for their excellent technical assistance. We also thank Catherine Harwood, Charlotte Proby and Irene Leigh from the Cancer Research UK Skin Tumour Laboratory for providing us with the tumor material from the RT recipients. We further thank Dako (Denmark) for generously providing us with telomeric PNA probe. This work was supported by grants from the Deutsche Krebshilfe eV (Tumorstammzellverbund) and Bmbf (UVA Kompetenzverbund) (to PB), Tumorzentrum Heidelberg/Mannheim (to AJ and PB), the Deutsche Forschungsgemeinschaft (SFB873 to PB and SFB 829, Z2 to CM) and supported by contract research ‘Adulte epidermale Stammzellen’ of the Baden-Württemberg Stiftung’ (P-BWS-ASII/35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Boukamp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leufke, C., Leykauf, J., Krunic, D. et al. The telomere profile distinguishes two classes of genetically distinct cutaneous squamous cell carcinomas. Oncogene 33, 3506–3518 (2014). https://doi.org/10.1038/onc.2013.323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.323

Keywords

This article is cited by

Search

Quick links