Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

PI3K in cancer–stroma interactions: bad in seed and ugly in soil

Abstract

Over the past decade the phosphoinositide-3 kinase (PI3K) signaling pathway emerged as an important player for tumor initiation and growth and, currently, PI3K inhibition constitutes a promising therapeutic approach for solid and hematological tumors. Beside its role in tumor cell evolution, PI3K signaling also provides integral functions for noncancerous cells that reside in healthy tissues surrounding the tumor, also referred as tumor microenvironment (TME). This review will address how PI3K signaling participates to the tumorigenic process and discuss the interaction between tumor cells and the surrounding TME, with particular focus on the role of PI3Ks in tumor-associated immune responses, tumor angiogenesis and metastasis formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wymann MP, Pirola L . Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1998; 1436: 127–150.

    CAS  PubMed  Google Scholar 

  2. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  3. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B . The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11: 329–341.

    CAS  PubMed  Google Scholar 

  4. Bartholomeusz C, Gonzalez-Angulo AM . Targeting the PI3K signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16: 121–130.

    CAS  PubMed  Google Scholar 

  5. Ciraolo E, Morello F, Hirsch E . Present and future of PI3K pathway inhibition in cancer: perspectives and limitations. Curr Med Chem 2011; 18: 2674–2685.

    CAS  PubMed  Google Scholar 

  6. Blajecka K, Borgstrom A, Arcaro A . Phosphatidylinositol 3-kinase isoforms as novel drug targets. Curr Drug Targets 2011; 12: 1056–1081.

    CAS  PubMed  Google Scholar 

  7. Adamo B, Deal AM, Burrows E, Geradts J, Hamilton E, Blackwell KL et al. Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Res 2011; 13: R125.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci USA 2009; 106: 4834–4839.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Schmid-Bindert G, Wang D, Zhao Y, Yang X, Su B et al. Blocking the PI3K/AKT and MEK/ERK signaling pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines. Adv Med Sci 2011; 56: 275–284.

    CAS  PubMed  Google Scholar 

  10. Clark AS, West K, Streicher S, Dennis PA . Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002; 1: 707–717.

    CAS  PubMed  Google Scholar 

  11. Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci 2005; 10: 975–987.

    CAS  PubMed  Google Scholar 

  12. Zhang T, Cui GB, Zhang J, Zhang F, Zhou YA, Jiang T et al. Inhibition of PI3 kinases enhances the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Rep 2010; 24: 1683–1689.

    CAS  PubMed  Google Scholar 

  13. Kim A, Park S, Lee JE, Jang WS, Lee SJ, Kang HJ et al. The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leuk Res 2012; 36: 912–920.

    CAS  PubMed  Google Scholar 

  14. Hollander MC, Blumenthal GM, Dennis PA . PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11: 289–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Falasca M . PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des 2010; 16: 1410–1416.

    CAS  PubMed  Google Scholar 

  16. Zhao L, Vogt PK . Class I PI3K in oncogenic cellular transformation. Oncogene 2008; 27: 5486–5496.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13375–13378.

    CAS  PubMed  Google Scholar 

  18. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    CAS  PubMed  Google Scholar 

  19. Cully M, You H, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6: 184–192.

    CAS  PubMed  Google Scholar 

  20. Yoshimoto M, Cutz JC, Nuin PA, Joshua AM, Bayani J, Evans AJ et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet 2006; 169: 128–137.

    CAS  PubMed  Google Scholar 

  21. Tsutsui S, Inoue H, Yasuda K, Suzuki K, Higashi H, Era S et al. Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology 2005; 68: 398–404.

    CAS  PubMed  Google Scholar 

  22. Shoman N, Klassen S, McFadden A, Bickis MG, Torlakovic E, Chibbar R . Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod Pathol 2005; 18: 250–259.

    CAS  PubMed  Google Scholar 

  23. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117–127.

    Article  CAS  PubMed  Google Scholar 

  24. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    Article  CAS  PubMed  Google Scholar 

  25. Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 2005; 65: 4562–4567.

    CAS  PubMed  Google Scholar 

  26. Mizoguchi M, Nutt CL, Mohapatra G, Louis DN . Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol 2004; 14: 372–377.

    CAS  PubMed  Google Scholar 

  27. Samuels Y, Velculescu VE . Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 2004; 3: 1221–1224.

    CAS  PubMed  Google Scholar 

  28. Vogt PK, Kang S, Elsliger MA, Gymnopoulos M . Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 2007; 32: 342–349.

    CAS  PubMed  Google Scholar 

  29. Burke JE, Perisic O, Masson GR, Vadas O, Williams RL . Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). Proc Natl Acad Sci USA 2012; 109: 15259–15264.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395–402.

    CAS  PubMed  Google Scholar 

  31. Li SY, Rong M, Grieu F, Iacopetta B . PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res Treat 2006; 96: 91–95.

    CAS  PubMed  Google Scholar 

  32. Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al. The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 2001; 61: 7426–7429.

    CAS  PubMed  Google Scholar 

  33. Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW . PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res 2011; 71: 4061–4067.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Knobbe CB, Reifenberger G . Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 2003; 13: 507–518.

    CAS  PubMed  Google Scholar 

  35. Benistant C, Chapuis H, Roche S . A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 2000; 19: 5083–5090.

    CAS  PubMed  Google Scholar 

  36. Edling CE, Selvaggi F, Buus R, Maffucci T, Di Sebastiano P, Friess H et al. Key role of phosphoinositide 3-kinase class IB in pancreatic cancer. Clin Cancer Res 2010; 16: 4928–4937.

    CAS  PubMed  Google Scholar 

  37. Carvalho S, Milanezi F, Costa JL, Amendoeira I, Schmitt F . PIKing the right isoform: the emergent role of the p110beta subunit in breast cancer. Virchows Arch 2010; 456: 235–243.

    CAS  PubMed  Google Scholar 

  38. Hill KM, Kalifa S, Das JR, Bhatti T, Gay M, Williams D et al. The role of PI 3-kinase p110beta in AKT signally, cell survival, and proliferation in human prostate cancer cells. Prostate 2010; 70: 755–764.

    CAS  PubMed  Google Scholar 

  39. Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C et al. Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 2008; 1: ra3.

    PubMed  PubMed Central  Google Scholar 

  40. Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 2008; 454: 776–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dbouk HA, Pang H, Fiser A, Backer JM . A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci USA 2010; 107: 19897–19902.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Paget S . The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8: 98–101.

    CAS  PubMed  Google Scholar 

  43. Morgan SC, Parker CC . Local treatment of metastatic cancer—killing the seed or disturbing the soil? Nat Rev Clin Oncol 2011; 8: 504–506.

    PubMed  Google Scholar 

  44. Lorusso G, Ruegg C . The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 2008; 130: 1091–1103.

    CAS  PubMed  Google Scholar 

  45. Fridman WH, Pages F, Sautes-Fridman C, Galon J . The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12: 298–306.

    CAS  PubMed  Google Scholar 

  46. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    CAS  PubMed  Google Scholar 

  47. Schmid MC, Varner JA . Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol 2010; 2010: 201026.

    PubMed  PubMed Central  Google Scholar 

  48. Ghigo A, Damilano F, Braccini L, Hirsch E . PI3K inhibition in inflammation: toward tailored therapies for specific diseases. Bioessays 2010; 32: 185–196.

    CAS  PubMed  Google Scholar 

  49. So L, Fruman DA . PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J. 2012; 442: 465–481.

    CAS  PubMed  Google Scholar 

  50. Zebedin E, Simma O, Schuster C, Putz EM, Fajmann S, Warsch W et al. Leukemic challenge unmasks a requirement for PI3Kdelta in NK cell-mediated tumor surveillance. Blood 2008; 112: 4655–4664.

    CAS  PubMed  Google Scholar 

  51. Putz EM, Prchal-Murphy M, Simma OA, Forster F, Koenig X, Stockinger H et al. PI3Kdelta is essential for tumor clearance mediated by cytotoxic T lymphocytes. PLoS One 2012; 7: e40852.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu D, Zhang T, Marshall AJ, Okkenhaug K, Vanhaesebroeck B, Uzonna JE . The p110delta isoform of phosphatidylinositol 3-kinase controls susceptibility to Leishmania major by regulating expansion and tissue homing of regulatory T cells. J Immunol 2009; 183: 1921–1933.

    CAS  PubMed  Google Scholar 

  53. Soond DR, Slack EC, Garden OA, Patton DT, Okkenhaug K . Does the PI3K pathway promote or antagonize regulatory T cell development and function? Front Immunol 2012; 3: 244.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Palucka K, Banchereau J . Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12: 265–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Marshall NA, Galvin KC, Corcoran AM, Boon L, Higgs R, Mills KH . Immunotherapy with PI3K inhibitor and Toll-like receptor agonist induces IFN-gamma+IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Res 2011; 72: 581–591.

    PubMed  Google Scholar 

  56. Tlsty TD, Coussens LM . Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006; 1: 119–150.

    CAS  PubMed  Google Scholar 

  57. Rommel C, Camps M, Ji H . PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 2007; 7: 191–201.

    CAS  PubMed  Google Scholar 

  58. Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 2005; 11: 936–943.

    CAS  PubMed  Google Scholar 

  59. Barber DF, Bartolome A, Hernandez C, Flores JM, Redondo C, Fernandez-Arias C et al. PI3Kgamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med 2005; 11: 933–935.

    CAS  PubMed  Google Scholar 

  60. Fougerat A, Gayral S, Gourdy P, Schambourg A, Ruckle T, Schwarz MK et al. Genetic and pharmacological targeting of phosphoinositide 3-kinase-gamma reduces atherosclerosis and favors plaque stability by modulating inflammatory processes. Circulation 2008; 117: 1310–1317.

    CAS  PubMed  Google Scholar 

  61. Damilano F, Franco I, Perrino C, Schaefer K, Azzolino O, Carnevale D et al. Distinct effects of leukocyte and cardiac phosphoinositide 3-kinase gamma activity in pressure overload-induced cardiac failure. Circulation 2011; 123: 391–399.

    CAS  PubMed  Google Scholar 

  62. Gonzalez-Garcia A, Sanchez-Ruiz J, Flores JM, Carrera AC . Phosphatidylinositol 3-kinase gamma inhibition ameliorates inflammation and tumor growth in a model of colitis-associated cancer. Gastroenterology 2010; 138: 1374–1383.

    CAS  PubMed  Google Scholar 

  63. Coussens LM, Zitvogel L, Palucka AK . Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013; 339: 286–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011; 19: 715–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schmid MC, Franco I, Kang SW, Hirsch E, Quilliam LA, Varner JA . PI3-kinase gamma promotes Rap1a-mediated activation of myeloid cell Integrin alpha4beta1, leading to tumor inflammation and growth. PLoS One 2013; 8: e60226.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 2000; 287: 1049–1053.

    CAS  PubMed  Google Scholar 

  67. Jones GE, Prigmore E, Calvez R, Hogan C, Dunn GA, Hirsch E et al. Requirement for PI 3-kinase gamma in macrophage migration to MCP-1 and CSF-1. Exp Cell Res 2003; 290: 120–131.

    CAS  PubMed  Google Scholar 

  68. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 2004; 118: 375–387.

    CAS  PubMed  Google Scholar 

  69. Beer-Hammer S, Zebedin E, von Holleben M, Alferink J, Reis B, Dresing P et al. The catalytic PI3K isoforms p110gamma and p110delta contribute to B cell development and maintenance, transformation, and proliferation. J Leukoc Biol 2010; 87: 1083–1095.

    CAS  PubMed  Google Scholar 

  70. Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megias D, Marques M et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 2004; 21: 429–441.

    CAS  PubMed  Google Scholar 

  71. Weis SM, Cheresh DA . Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011; 17: 1359–1370.

    CAS  PubMed  Google Scholar 

  72. Schmid MC, Varner JA . Myeloid cell trafficking and tumor angiogenesis. Cancer Lett 2007; 250: 1–8.

    CAS  PubMed  Google Scholar 

  73. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60: 1541–1545.

    CAS  PubMed  Google Scholar 

  74. Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90: 3322–3331.

    CAS  PubMed  Google Scholar 

  75. Xia C, Meng Q, Cao Z, Shi X, Jiang BH . Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. J Cell Physiol 2006; 209: 56–66.

    CAS  PubMed  Google Scholar 

  76. Fang J, Ding M, Yang L, Liu LZ, Jiang BH . PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 2007; 19: 2487–2497.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu L, Hofmann J, Jaffe RB . Phosphatidylinositol 3-kinase mediates angiogenesis and vascular permeability associated with ovarian carcinoma. Clin Cancer Res 2005; 11: 8208–8212.

    CAS  PubMed  Google Scholar 

  78. Guo D, Jia Q, Song HY, Warren RS, Donner DB . Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995; 270: 6729–6733.

    CAS  PubMed  Google Scholar 

  79. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336–30343.

    CAS  PubMed  Google Scholar 

  80. Gille H, Kowalski J, Yu L, Chen H, Pisabarro MT, Davis-Smyth T et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3'-kinase activation and endothelial cell migration. EMBO J 2000; 19: 4064–4073.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008; 453: 662–666.

    CAS  PubMed  Google Scholar 

  82. Heller R, Chang Q, Ehrlich G, Hsieh SN, Schoenwaelder SM, Kuhlencordt PJ et al. Overlapping and distinct roles for PI3Kbeta and gamma isoforms in S1P-induced migration of human and mouse endothelial cells. Cardiovasc Res 2008; 80: 96–105.

    CAS  PubMed  Google Scholar 

  83. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J et al. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci USA 2008; 105: 9739–9744.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schnell CR, Stauffer F, Allegrini PR, O'Reilly T, McSheehy PM, Dartois C et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res 2008; 68: 6598–6607.

    CAS  PubMed  Google Scholar 

  85. Lelievre E, Bourbon PM, Duan LJ, Nussbaum RL, Fong GH . Deficiency in the p110alpha subunit of PI3K results in diminished Tie2 expression and Tie2(−/−)-like vascular defects in mice. Blood 2005; 105: 3935–3938.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee JH, Lee H, Yun SM, Jung KH, Jeong Y, Yan HH et al. IPD-196, a novel phosphatidylinositol 3-kinase inhibitor with potent anticancer activity against hepatocellular carcinoma. Cancer Lett 2013; 329: 99–108.

    CAS  PubMed  Google Scholar 

  87. Lee H, Jung KH, Jeong Y, Hong S, Hong SS . HS-173, a novel phosphatidylinositol 3-kinase (PI3K) inhibitor, has anti-tumor activity through promoting apoptosis and inhibiting angiogenesis. Cancer Lett 2013; 328: 152–159.

    CAS  PubMed  Google Scholar 

  88. Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N, Okamoto Y et al. Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 2012; 18: 1560–1569.

    CAS  PubMed  Google Scholar 

  89. Chavakis E, Carmona G, Urbich C, Gottig S, Henschler R, Penninger JM et al. Phosphatidylinositol-3-kinase-gamma is integral to homing functions of progenitor cells. Circ Res 2008; 102: 942–949.

    CAS  PubMed  Google Scholar 

  90. Madeddu P, Kraenkel N, Barcelos LS, Siragusa M, Campagnolo P, Oikawa A et al. Phosphoinositide 3-kinase gamma gene knockout impairs postischemic neovascularization and endothelial progenitor cell functions. Arterioscler Thromb Vasc Biol 2008; 28: 68–76.

    CAS  PubMed  Google Scholar 

  91. Kong D, Okamura M, Yoshimi H, Yamori T . Antiangiogenic effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor. Eur J Cancer 2009; 45: 857–865.

    CAS  PubMed  Google Scholar 

  92. Qayum N, Im J, Stratford MR, Bernhard EJ, McKenna WG, Muschel RJ . Modulation of the tumor microvasculature by phosphoinositide-3 kinase inhibition increases doxorubicin delivery in vivo. Clin Cancer Res 2012; 18: 161–169.

    CAS  PubMed  Google Scholar 

  93. Garlich JR, De P, Dey N, Su JD, Peng X, Miller A et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 2008; 68: 206–215.

    CAS  PubMed  Google Scholar 

  94. Geng L, Tan J, Himmelfarb E, Schueneman A, Niermann K, Brousal J et al. A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3'-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Res 2004; 64: 4893–4899.

    CAS  PubMed  Google Scholar 

  95. Lu P, Takai K, Weaver VM, Werb Z . Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3: 12.

    Google Scholar 

  96. Littlepage LE, Egeblad M, Werb Z . Coevolution of cancer and stromal cellular responses. Cancer Cell 2005; 7: 499–500.

    CAS  PubMed  Google Scholar 

  97. Xing F, Saidou J, Watabe K . Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci [Review] 2010; 15: 166–179.

    CAS  PubMed Central  Google Scholar 

  98. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  99. Awad AE, Kandalam V, Chakrabarti S, Wang X, Penninger JM, Davidge ST et al. Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a PI3Kgamma-dependent manner. Am J Physiol Cell Physiol 2009; 298: C679–C692.

    PubMed  Google Scholar 

  100. Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: association with MMP-9. Hepatol Res 2009; 39: 177–186.

    CAS  PubMed  Google Scholar 

  101. Hutti JE, Pfefferle AD, Russell SC, Sircar M, Perou CM, Baldwin AS . Oncogenic PI3K mutations lead to NF-kappaB-dependent cytokine expression following growth factor deprivation. Cancer Res [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov’t, Non-P.H.S.] 2012; 72: 3260–3269.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim S, Huang W, Mottillo EP, Sohail A, Ham YA, Conley-Lacomb MK et al. Posttranslational regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in mouse PTEN null prostate cancer cells: Enhanced surface expression and differential O-glycosylation of MT1-MMP. Biochim Biophys Acta [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t] 2010; 1803: 1287–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu Q, Stamenkovic I . Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev [Research Support, US Gov’t, P.H.S.] 2000; 14: 163–176.

    PubMed  PubMed Central  Google Scholar 

  104. Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J et al. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t] 2011; 286: 33167–33177.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Grassian AR, Coloff JL, Brugge JS . Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb Symp Quant Biol 2011; 76: 313–324.

    CAS  PubMed  Google Scholar 

  106. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461: 109–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012; 21: 227–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    CAS  PubMed  Google Scholar 

  109. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  110. Scheel C, Weinberg RA . Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 2012; 22: 396–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    CAS  PubMed  Google Scholar 

  112. Cheng GZ, Zhang W, Wang LH . Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res 2008; 68: 957–960.

    CAS  PubMed  Google Scholar 

  113. Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D et al. Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-beta signaling axes. Cancer Discov 2012; 2: 248–259.

    CAS  PubMed  Google Scholar 

  114. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 2003; 63: 2172–2178.

    CAS  PubMed  Google Scholar 

  115. Wallin JJ, Guan J, Edgar KA, Zhou W, Francis R, Torres AC et al. Active PI3K pathway causes an invasive phenotype which can be reversed or promoted by blocking the pathway at divergent nodes. PLoS One 2012; 7: e36402.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wik E, Raeder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA et al. Lack of Estrogen receptor alpha is associated with epithelial-mesenchymal transition and PI3Kinase alterations in endometrial carcinoma. Clin Cancer Res 2013; 19: 1094–1105.

    CAS  PubMed  Google Scholar 

  117. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19: 279–290.

    CAS  PubMed  Google Scholar 

  118. Castillo JJ, Furman M, Winer ES . CAL-101: a phosphatidylinositol-3-kinase p110-delta inhibitor for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 2012; 21: 15–22.

    CAS  PubMed  Google Scholar 

  119. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331: 1612–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sampaio NG, Yu W, Cox D, Wyckoff J, Condeelis J, Stanley ER et al. Phosphorylation of CSF-1R Y721 mediates its association with PI3K to regulate macrophage motility and enhancement of tumor cell invasion. J Cell Sci 2011; 124 (Pt 12): 2021–2031.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Torsvik A, Bjerkvig R . Mesenchymal stem cell signaling in cancer progression. Cancer Treat Rev 2013; 39: 180–188.

    CAS  PubMed  Google Scholar 

  123. Zhang L, Yang J, Qian J, Li H, Romaguera JE, Kwak LW et al. Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells. Blood 2012; 120: 3783–3792.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 2009; 15: 6630–6638.

    CAS  PubMed  Google Scholar 

  125. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 2004; 18: 1016–1018.

    CAS  PubMed  Google Scholar 

  126. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 2009; 15: 21–34.

    CAS  PubMed  Google Scholar 

  127. Lau MT, So WK, Leung PC . Fibroblast growth factor 2 induces E-cadherin down-regulation via PI3K/Akt/mTOR and MAPK/ERK signaling in ovarian cancer cells. PLoS One 2013; 8: e59083.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank MC Schmid for critical reading of the manuscript. This work was supported by a grant from Fondazione Cariplo and Associazione Italiana Ricerca Cancro (AIRC). AG is recipient of a fellowship from Italian Foundation for Cancer Research (FIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Hirsch.

Ethics declarations

Competing interests

EH is co-founder of Kither Biotech, a company involved in the development of PI3K inhibitors. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, E., Ciraolo, E., Franco, I. et al. PI3K in cancer–stroma interactions: bad in seed and ugly in soil. Oncogene 33, 3083–3090 (2014). https://doi.org/10.1038/onc.2013.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.265

Keywords

This article is cited by

Search

Quick links