Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of IGFBP7 expression and persistent AKT activation contribute to SMARCB1/Snf5-mediated tumorigenesis

Abstract

SMARCB1 (Snf5/Ini1/Baf47) is a potent tumor suppressor, the loss of which serves as the diagnostic feature in malignant rhabdoid tumors (MRT) and atypical teratoid/rhabdoid tumors (AT/RT), two highly aggressive forms of pediatric neoplasms. SMARCB1 is a core subunit of Swi/Snf chromatin remodeling complexes, and loss of SMARCB1 or other subunits of these complexes has been observed in a variety of tumor types. Here, we restore Smarcb1 expression in cells derived from Smarcb1-deficient tumors, which developed in Smarcb1 heterozygous p53−/− mice. We find that while re-introduction of Smarcb1 does not induce growth arrest, it restores sensitivity to programmed cell death and completely abolishes the ability of the tumor cells to grow as xenografts. We describe persistent activation of AKT signaling in Smarcb1-deficient cells, which stems from PI3K (phosphatidylinositol 3′-kinase)-mediated signaling and which contributes to the survival and proliferation of the tumor cells. We further demonstrate that inhibition of AKT is effective in preventing proliferation of Smarcb1-deficient cells in vitro and inhibits the development of xenografted tumors in vivo. Profiling Smarcb1-dependent gene expression, we find genes that require Smarcb1 and Swi/Snf for their expression to be enriched for extracellular matrix and cell adhesion functions. We find that Smarcb1 is required for transcriptional activation of Igfbp7, a member of the insulin-like growth factor-binding proteins family and a tumor suppressor in itself, and show that re-introduction of Igfbp7 alone can hinder tumor development. Our results define a novel mechanism for Smarcb1-mediated tumorigenesis and highlight potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M . The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 2000; 1: 500–506.

    Article  CAS  Google Scholar 

  2. Roberts CW, Leroux MM, Fleming MD, Orkin SH . Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002; 2: 415–425.

    Article  CAS  Google Scholar 

  3. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203–206.

    Article  CAS  Google Scholar 

  4. Wilson BG, Roberts CW . SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 2011; 11: 481–492.

    Article  CAS  Google Scholar 

  5. Phelan ML, Sif S, Narlikar GJ, Kingston RE . Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 1999; 3: 247–253.

    Article  CAS  Google Scholar 

  6. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542.

    Article  CAS  Google Scholar 

  7. Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 2003; 63: 560–566.

    CAS  Google Scholar 

  8. Medjkane S, Novikov E, Versteege I, Delattre O . The tumor suppressor hSNF5/INI1 modulates cell growth and actin cytoskeleton organization. Cancer Res 2004; 64: 3406–3413.

    Article  CAS  Google Scholar 

  9. Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LM, Mohd-Sarip A et al. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2004; 279: 3807–3816.

    Article  CAS  Google Scholar 

  10. Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 2002; 22: 5975–5988.

    Article  CAS  Google Scholar 

  11. Tsikitis M, Zhang Z, Edelman W, Zagzag D, Kalpana GV . Genetic ablation of Cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc Natl Acad Sci USA 2005; 102: 12129–12134.

    Article  CAS  Google Scholar 

  12. Versteege I, Medjkane S, Rouillard D, Delattre O . A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 2002; 21: 6403–6412.

    Article  CAS  Google Scholar 

  13. Isakoff MS, Sansam CG, Tamayo P, Subramanian A, Evans JA, Fillmore CM et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 2005; 102: 17745–17750.

    Article  CAS  Google Scholar 

  14. Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV . c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet 1999; 22: 102–105.

    Article  CAS  Google Scholar 

  15. Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B, Chen D et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 2010; 16: 1429–1433.

    Article  CAS  Google Scholar 

  16. Klochendler-Yeivin A, Picarsky E, Yaniv M . Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 2006; 26: 2661–2674.

    Article  CAS  Google Scholar 

  17. Smith MJ, Walker JA, Shen Y, Stemmer-Rachamimov A, Gusella JF, Plotkin SR . Expression of SMARCB1 (INI1) mutations in familial schwannomatosis. Hum Mol Genet 2012; 21: 5239–5245.

    Article  CAS  Google Scholar 

  18. Ae K, Kobayashi N, Sakuma R, Ogata T, Kuroda H, Kawaguchi N et al. Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells. Oncogene 2002; 21: 3112–3120.

    Article  CAS  Google Scholar 

  19. Reincke BS, Rosson GB, Oswald BW, Wright CF . INI1 expression induces cell cycle arrest and markers of senescence in malignant rhabdoid tumor cells. J Cell Physiol 2003; 194: 303–313.

    Article  CAS  Google Scholar 

  20. Betz BL, Strobeck MW, Reisman DN, Knudsen ES, Weissman BE . Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 2002; 21: 5193–5203.

    Article  CAS  Google Scholar 

  21. Charboneau A, Chai J, Jordan J, Funkhouser W, Judkins A, Biegel J et al. P-Akt expression distinguishes two types of malignant rhabdoid tumors. J Cell Physiol 2006; 209: 422–427.

    Article  CAS  Google Scholar 

  22. Jozwiak J, Bikowska B, Grajkowska W, Sontowska I, Roszkowski M, Galus R . Activation of Akt/mTOR pathway in a patient with atypical teratoid/rhabdoid tumor. Folia Neuropathol 2010; 48: 185–189.

    CAS  PubMed  Google Scholar 

  23. Foster K, Wang Y, Zhou D, Wright C . Dependence on PI3K/Akt signaling for malignant rhabdoid tumor cell survival. Cancer Chemother Pharmacol 2009; 63: 783–791.

    Article  CAS  Google Scholar 

  24. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Article  CAS  Google Scholar 

  25. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  Google Scholar 

  26. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  Google Scholar 

  27. Burgering BM, Coffer PJ . Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376: 599–602.

    Article  CAS  Google Scholar 

  28. Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 2005; 19: 2199–2211.

    Article  CAS  Google Scholar 

  29. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  Google Scholar 

  30. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest 2012; 122: 2983–2988.

    Article  CAS  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  32. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  Google Scholar 

  33. Wang L, Baiocchi RA, Pal S, Mosialos G, Caligiuri M, Sif S . The BRG1- and hBRM-associated factor BAF57 induces apoptosis by stimulating expression of the cylindromatosis tumor suppressor gene. Mol Cell Biol 2005; 25: 7953–7965.

    Article  CAS  Google Scholar 

  34. Hendricks KB, Shanahan F, Lees E . Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 2004; 24: 362–376.

    Article  CAS  Google Scholar 

  35. Wang X, Sansam CG, Thom CS, Metzger D, Evans JA, Nguyen PT et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res 2009; 69: 8094–8101.

    Article  CAS  Google Scholar 

  36. Aguilar RC, Wendland B . Endocytosis of membrane receptors: two pathways are better than one. Proc Natl Acad Sci USA 2005; 102: 2679–2680.

    Article  CAS  Google Scholar 

  37. Le Roy C, Wrana JL . Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005; 6: 112–126.

    Article  CAS  Google Scholar 

  38. Oh Y, Nagalla SR, Yamanaka Y, Kim HS, Wilson E, Rosenfeld RG . Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. J Biol Chem 1996; 271: 30322–30325.

    Article  CAS  Google Scholar 

  39. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132: 363–374.

    Article  CAS  Google Scholar 

  40. Figueroa JA, Sharma J, Jackson JG, McDermott MJ, Hilsenbeck SG, Yee D . Recombinant insulin-like growth factor binding protein-1 inhibits IGF-I, serum, and estrogen-dependent growth of MCF-7 human breast cancer cells. J Cell Physiol 1993; 157: 229–236.

    Article  CAS  Google Scholar 

  41. Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal 2012; 5: ra92.

    Article  Google Scholar 

  42. Hooper AT, Shmelkov SV, Gupta S, Milde T, Bambino K, Gillen K et al. Angiomodulin is a specific marker of vasculature and regulates vascular endothelial growth factor-A-dependent neoangiogenesis. Circ Res 2009; 105: 201–208.

    Article  CAS  Google Scholar 

  43. Pen A, Durocher Y, Slinn J, M Rukhlova, Charlebois C, DB Stanimirovic et al. Insulin-like growth factor binding protein 7 exhibits tumor suppressive and vessel stabilization properties in U87MG and T98G glioblastoma cell lines. Cancer Biol Ther 2011; 12: 634–646.

    Article  CAS  Google Scholar 

  44. Chen D, Yoo BK, Santhekadur PK, Gredler R, Bhutia SK, Das SK et al. Insulin-like growth factor-binding protein-7 functions as a potential tumor suppressor in hepatocellular carcinoma. Clin Cancer Res 2011; 17: 6693–6701.

    Article  CAS  Google Scholar 

  45. Tamura K, Hashimoto K, Suzuki K, Yoshie M, Kutsukake M, Sakurai T . Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. Eur J Pharmacol 2009; 610: 61–67.

    Article  CAS  Google Scholar 

  46. Drobic B, Perez-Cadahia B, Yu J, Kung SK, Davie JR . Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 2010; 38: 3196–3208.

    Article  CAS  Google Scholar 

  47. Zhang M, Fang H, Zhou J, Herring BP . A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression. J Biol Chem 2007; 282: 25708–25716.

    Article  CAS  Google Scholar 

  48. Xi Q, He W, Zhang XH, Le HV, Massague J . Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J Biol Chem 2008; 283: 1146–1155.

    Article  CAS  Google Scholar 

  49. Nocentini S . Apoptotic response of malignant rhabdoid tumor cells. Cancer Cell Int 2003; 3: 11.

    Article  Google Scholar 

  50. Arcaro A, Doepfner KT, Boller D, Guerreiro AS, Shalaby T, Jackson SP et al. Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem J 2007; 406: 57–66.

    Article  CAS  Google Scholar 

  51. Vizioli MG, Sensi M, Miranda C, Cleris L, Formelli F, Anania MC et al. IGFBP7: an oncosuppressor gene in thyroid carcinogenesis. Oncogene 2010; 29: 3835–3844.

    Article  CAS  Google Scholar 

  52. Sato Y, Chen Z, Miyazaki K . Strong suppression of tumor growth by insulin-like growth factor-binding protein-related protein 1/tumor-derived cell adhesion factor/mac25. Cancer Sci 2007; 98: 1055–1063.

    Article  CAS  Google Scholar 

  53. Benatar T, Yang W, Amemiya Y, Evdokimova V, Kahn H, Holloway C et al. IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways. Breast Cancer Res Treat 2012; 133: 563–573.

    Article  CAS  Google Scholar 

  54. Burger AM, Leyland-Jones B, Banerjee K, Spyropoulos DD, Seth AK . Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. Eur J Cancer 2005; 41: 1515–1527.

    Article  CAS  Google Scholar 

  55. Yamanaka Y, Wilson EM, Rosenfeld RG, Oh Y . Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J Biol Chem 1997; 272: 30729–30734.

    Article  CAS  Google Scholar 

  56. Ahmed S, Yamamoto K, Sato Y, Ogawa T, Herrmann A, Higashi S et al. Proteolytic processing of IGFBP-related protein-1 (TAF/angiomodulin/mac25) modulates its biological activity. Biochem Biophys Res Commun 2003; 310: 612–618.

    Article  CAS  Google Scholar 

  57. Beattie J, Kreiner M, Allan GJ, Flint DJ, Domingues D, van der Walle CF . IGFBP-3and IGFBP-5 associate with the cell binding domain (CBD) of fibronectin. Biochem Biophys Res Commun 2009; 381: 572–576.

    Article  CAS  Google Scholar 

  58. Collett-Solberg PF, Cohen P . The role of the insulin-like growth factor binding proteins and the IGFBP proteases in modulating IGF action. Endocrinol Metab Clin North Am 1996; 25: 591–614.

    Article  CAS  Google Scholar 

  59. Hollmann TJ, Hornick JL . INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 2011; 35: e47–e63.

    Article  Google Scholar 

  60. Euhus DM, Hudd C, LaRegina MC, Johnson FE . Tumor measurement in the nude mouse. J Surg Oncol 1986; 31: 229–234.

    Article  CAS  Google Scholar 

  61. Naviaux RK, Costanzi E, Haas M, Verma IM . The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 1996; 70: 5701–5705.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Muchardt C, Sardet C, Bourachot B, Onufryk C, Yaniv M . A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res 1995; 23: 1127–1132.

    Article  CAS  Google Scholar 

  63. Barzily-Rokni M, Friedman N, Ron-Bigger S, Isaac S, Michlin D, Eden A . Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16 (CDKN2A). Nucleic Acids Res 2011; 39: 1326–1335.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Ittai Ben-Porath, Professor Eli Keshet and Professor Alex Levitzki for reagents and helpful discussions. This work was funded by the Israel Cancer Research Fund (ICRF, 2011-3094-PG) and by the Association for International Cancer Research (AICR 03-109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Eden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darr, J., Klochendler, A., Isaac, S. et al. Loss of IGFBP7 expression and persistent AKT activation contribute to SMARCB1/Snf5-mediated tumorigenesis. Oncogene 33, 3024–3032 (2014). https://doi.org/10.1038/onc.2013.261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.261

Keywords

This article is cited by

Search

Quick links