Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis

Abstract

The metabolic functions of androgen receptor (AR) in normal prostate are circumvented in prostate cancer (PCa) to drive tumor growth, and the AR also can acquire new growth-promoting functions during PCa development and progression through genetic and epigenetic mechanisms. Androgen deprivation therapy (ADT, surgical or medical castration) is the standard treatment for metastatic PCa, but patients invariably relapse despite castrate androgen levels (castration-resistant PCa, CRPC). Early studies from many groups had shown that AR was highly expressed and transcriptionally active in CRPC, and indicated that steroids from the adrenal glands were contributing to this AR activity. More recent studies showed that CRPC cells had increased expression of enzymes mediating androgen synthesis from adrenal steroids, and could synthesize androgens de novo from cholesterol. Phase III clinical trials showing a survival advantage in CRPC for treatment with abiraterone (inhibitor of the enzyme CYP17A1 required for androgen synthesis that markedly reduces androgens and precursor steroids) and for enzalutamide (new AR antagonist) have now confirmed that AR activity driven by residual androgens makes a major contribution to CRPC, and led to the recent Food and Drug Administration approval of both agents. Unfortunately, patients treated with these agents for advanced CRPC generally relapse within a year and AR appears to be active in the relapsed tumors, but the molecular mechanisms mediating intrinsic or acquired resistance to these AR-targeted therapies remain to be defined. This review outlines AR functions that contribute to PCa development and progression, the roles of intratumoral androgen synthesis and AR structural alterations in driving AR activity in CRPC, mechanisms of action for abiraterone and enzalutamide, and possible mechanisms of resistance to these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mahoney EM, Harrison JH . Bilateral adrenalectomy for palliative treatment of prostatic cancer. J Urol 1972; 108: 936–938.

    CAS  Google Scholar 

  2. Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 2004; 22: 1025–1033.

    CAS  Google Scholar 

  3. Yap TA, Carden CP, Attard G, de Bono JS . Targeting CYP17: established and novel approaches in prostate cancer. Curr Opin Pharmacol 2008; 8: 449–457.

    CAS  Google Scholar 

  4. Taplin ME, Regan MM, Ko YJ, Bubley GJ, Duggan SE, Werner L et al. Phase II study of androgen synthesis inhibition with ketoconazole, hydrocortisone, and dutasteride in asymptomatic castration-resistant prostate cancer. Clin Cancer Res 2009; 15: 7099–7105.

    CAS  Google Scholar 

  5. Eisenberger MA, Blumenstein BA, Crawford ED, Miller G, McLeod DG, Loehrer PJ et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 1998; 339: 1036–1042.

    CAS  Google Scholar 

  6. Samson DJ, Seidenfeld J, Schmitt B, Hasselblad V, Albertsen PC, Bennett CL et al. Systematic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer 2002; 95: 361–376.

    CAS  Google Scholar 

  7. Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, Verleun-Mooijman MC, Trapman J, Brinkmann AO et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol 1994; 144: 735–746.

    CAS  Google Scholar 

  8. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393–1398.

    CAS  Google Scholar 

  9. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 2004; 164: 217–227.

    CAS  Google Scholar 

  10. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006; 66: 2815–2825.

    CAS  Google Scholar 

  11. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.

    CAS  Google Scholar 

  12. Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999; 59: 2511–2515.

    CAS  Google Scholar 

  13. Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL et al. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 1998; 58: 5718–5724.

    CAS  Google Scholar 

  14. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Google Scholar 

  15. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54: 2577–2581.

    CAS  Google Scholar 

  16. Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ . Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 2002; 62: 1008–1013.

    CAS  Google Scholar 

  17. Yuan X, Li T, Wang H, Zhang T, Barua M, Borgesi RA et al. Androgen receptor remains critical for cell-cycle progression in androgen-independent CWR22 prostate cancer cells. Am J Pathol 2006; 169: 682–696.

    CAS  Google Scholar 

  18. Mohler JL, Gregory CW, Ford OH 3rd, Kim D, Weaver CM, Petrusz P et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res 2004; 10: 440–448.

    CAS  Google Scholar 

  19. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL . Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005; 11: 4653–4657.

    CAS  Google Scholar 

  20. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008; 68: 4447–4454.

    CAS  Google Scholar 

  21. Cai C, Balk SP . Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 2011; 18: R175–R182.

    CAS  Google Scholar 

  22. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013; 368: 138–148.

    CAS  Google Scholar 

  23. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    CAS  Google Scholar 

  24. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995–2005.

    CAS  Google Scholar 

  25. Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 2000; 275: 26164–26171.

    CAS  Google Scholar 

  26. Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Y et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA 2001; 98: 4904–4909.

    CAS  Google Scholar 

  27. He B, Gampe RT Jr., Kole AJ, Hnat AT, Stanley TB, An G et al. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 2004; 16: 425–438.

    CAS  Google Scholar 

  28. Hur E, Pfaff SJ, Payne ES, Gron H, Buehrer BM, Fletterick RJ . Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2004; 2: E274.

    Google Scholar 

  29. Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA et al. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci USA 2005; 102: 9802–9807.

    CAS  Google Scholar 

  30. van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJ et al. Compartmentalization of androgen receptor protein-protein interactions in living cells. J Cell Biol 2007; 177: 63–72.

    CAS  Google Scholar 

  31. van Royen ME, van Cappellen WA, de Vos C, Houtsmuller AB, Trapman J . Stepwise androgen receptor dimerization. J Cell Sci 2012; 125: 1970–1979.

    CAS  Google Scholar 

  32. Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T et al. Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 2007; 27: 1823–1843.

    CAS  Google Scholar 

  33. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 2008; 132: 958–970.

    CAS  Google Scholar 

  34. He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q et al. Nucleosome dynamics define transcriptional enhancers. Nat Genet 2010; 42: 343–347.

    CAS  Google Scholar 

  35. Gioeli D, Paschal BM . Post-translational modification of the androgen receptor. Mol Cell Endocrinol 2012; 352: 70–78.

    CAS  Google Scholar 

  36. Shang Y, Myers M, Brown M . Formation of the androgen receptor transcription complex. Mol Cell 2002; 9: 601–610.

    CAS  Google Scholar 

  37. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009; 138: 245–256.

    Article  CAS  Google Scholar 

  38. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011; 30: 2719–2733.

    CAS  Google Scholar 

  39. Xu Y, Chen SY, Ross KN, Balk SP . Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 2006; 66: 7783–7792.

    CAS  Google Scholar 

  40. Knudsen KE, Arden KC, Cavenee WK . Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 1998; 273: 20213–20222.

    CAS  Google Scholar 

  41. Balk SP, Knudsen KE . AR, the cell cycle, and prostate cancer. Nucl Recept Signal 2008; 6: e001.

    Google Scholar 

  42. Lu L, Schulz H, Wolf DA . The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol 2002; 3: 22.

    CAS  Google Scholar 

  43. Fang Z, Zhang T, Dizeyi N, Chen S, Wang H, Swanson KD et al. Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem 2012; 287: 2090–2098.

    CAS  Google Scholar 

  44. Wang H, Xu Y, Fang Z, Chen S, Balk SP, Yuan X . Doxycycline regulated induction of AKT in murine prosate drives proliferation independently of p27 cyclin dependent kinase inhibitor downregulation. PLoS ONE 2012; 7: e41330.

    CAS  Google Scholar 

  45. Lu S, Liu M, Epner DE, Tsai SY, Tsai MJ . Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 1999; 13: 376–384.

    CAS  Google Scholar 

  46. Yan G, Fukabori Y, Nikolaropoulos S, Wang F, McKeehan WL . Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial-cell andromedin. Mol Endocrinol 1992; 6: 2123–2128.

    CAS  Google Scholar 

  47. Curtin D, Jenkins S, Farmer N, Anderson AC, Haisenleder DJ, Rissman E et al. Androgen suppression of GnRH-stimulated rat LHbeta gene transcription occurs through Sp1 sites in the distal GnRH-responsive promoter region. Mol Endocrinol 2001; 15: 1906–1917.

    CAS  Google Scholar 

  48. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z . The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res 2007; 67: 967–975.

    CAS  Google Scholar 

  49. Grosse A, Bartsch S, Baniahmad A . Androgen receptor-mediated gene repression. Mol Cell Endocrinol 2012; 352: 46–56.

    CAS  Google Scholar 

  50. Truica CI, Byers S, Gelmann EP . Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 2000; 60: 4709–4713.

    CAS  Google Scholar 

  51. Shah S, Hecht A, Pestell R, Byers SW . Trans-repression of beta-catenin activity by nuclear receptors. J Biol Chem 2003; 278: 48137–48145.

    CAS  Google Scholar 

  52. Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B et al. Linking beta-catenin to androgen-signaling pathway. J Biol Chem 2002; 277: 11336–11344.

    CAS  Google Scholar 

  53. Chesire DR, Isaacs WB . Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor. Oncogene 2002; 21: 8453–8469.

    CAS  Google Scholar 

  54. Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC . Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis. Oncogene 2003; 22: 5602–5613.

    CAS  Google Scholar 

  55. Chen SY, Wulf G, Zhou XZ, Rubin MA, Lu KP, Balk SP . Activation of beta-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-beta-catenin interaction. Mol Cell Biol 2006; 26: 929–939.

    CAS  Google Scholar 

  56. Yuan X, Lu ML, Li T, Balk SP . SRY interacts with and negatively regulates androgen receptor transcriptional activity. J Biol Chem 2001; 276: 46647–46654.

    CAS  Google Scholar 

  57. Jouravel N, Sablin E, Arnold LA, Guy RK, Fletterick RJ . Interaction between the androgen receptor and a segment of its corepressor SHP. Acta Crystallogr D Biol Crystallogr 2007; 63: 1198–1200.

    CAS  Google Scholar 

  58. Moehren U, Papaioannou M, Reeb CA, Hong W, Baniahmad A . Alien interacts with the human androgen receptor and inhibits prostate cancer cell growth. Mol Endocrinol 2007; 21: 1039–1048.

    CAS  Google Scholar 

  59. Gamble SC, Chotai D, Odontiadis M, Dart DA, Brooke GN, Powell SM et al. Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 2007; 26: 1757–1768.

    CAS  Google Scholar 

  60. Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG . Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 2005; 25: 1425–1436.

    CAS  Google Scholar 

  61. Yu X, Li P, Roeder RG, Wang Z . Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol Cell Biol 2001; 21: 4614–4625.

    CAS  Google Scholar 

  62. Yoon HG, Wong J . The corepressors silencing mediator of retinoid and thyroid hormone receptor and nuclear receptor corepressor are involved in agonist- and antagonist-regulated transcription by androgen receptor. Mol Endocrinol 2006; 20: 1048–1060.

    CAS  Google Scholar 

  63. Cheng S, Brzostek S, Lee SR, Hollenberg AN, Balk SP . Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor. Mol Endocrinol 2002; 16: 1492–1501.

    CAS  Google Scholar 

  64. Hodgson MC, Astapova I, Cheng S, Lee LJ, Verhoeven MC, Choi E et al. The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J Biol Chem 2005; 280: 6511–6519.

    CAS  Google Scholar 

  65. Song LN, Coghlan M, Gelmann EP . Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor. Mol Endocrinol 2004; 18: 70–85.

    CAS  Google Scholar 

  66. Zhao JC, Yu J, Runkle C, Wu L, Hu M, Wu D et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res 2012; 22: 322–331.

    CAS  Google Scholar 

  67. Chng KR, Chang CW, Tan SK, Yang C, Hong SZ, Sng NY et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J 2012; 31: 2810–2823.

    CAS  Google Scholar 

  68. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436–439.

    CAS  Google Scholar 

  69. Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007; 9: 347–353.

    CAS  Google Scholar 

  70. Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 2011; 20: 457–471.

    CAS  Google Scholar 

  71. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    CAS  Google Scholar 

  72. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 2007; 128: 505–518.

    CAS  Google Scholar 

  73. Hu Q, Kwon YS, Nunez E, Cardamone MD, Hutt KR, Ohgi KA et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA 2008; 105: 19199–19204.

    CAS  Google Scholar 

  74. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 2008; 319: 202–206.

    CAS  Google Scholar 

  75. Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 2007; 446: 882–887.

    CAS  Google Scholar 

  76. Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 2008; 10: 53–60.

    CAS  Google Scholar 

  77. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N et al. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 2010; 464: 792–796.

    CAS  Google Scholar 

  78. Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71: 6503–6513.

    CAS  Google Scholar 

  79. Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A, Barry WT et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J Clin Oncol 2009; 27: 2022–2029.

    CAS  Google Scholar 

  80. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    CAS  Google Scholar 

  81. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10: 177–188.

    CAS  Google Scholar 

  82. Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010; 17: 443–454.

    CAS  Google Scholar 

  83. Huang Z, Hurley PJ, Simons BW, Marchionni L, Berman DM, Ross AE et al. Sox9 is required for prostate development and prostate cancer initiation. Oncotarget 2012; 3: 651–663.

    Google Scholar 

  84. Schaeffer EM, Marchionni L, Huang Z, Simons B, Blackman A, Yu W et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 2008; 27: 7180–7191.

    CAS  Google Scholar 

  85. Thomsen MK, Butler CM, Shen MM, Swain A . Sox9 is required for prostate development. Dev Biol 2008; 316: 302–311.

    CAS  Google Scholar 

  86. Wang H, Leav I, Ibaragi S, Wegner M, Hu GF, Lu ML et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res 2008; 68: 1625–1630.

    CAS  Google Scholar 

  87. Cai C, Wang H, He HH, Chen S, He L, Ma F et al. ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest 2013; 123: 1109–1122.

    CAS  Google Scholar 

  88. Thomsen MK, Ambroisine L, Wynn S, Cheah KS, Foster CS, Fisher G et al. SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res 2010; 70: 979–987.

    CAS  Google Scholar 

  89. Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 2007; 12: 559–571.

    CAS  Google Scholar 

  90. Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X . SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 2007; 67: 528–536.

    CAS  Google Scholar 

  91. Bhatt RS, Werner L, Regan MM, Yannucci J, Ko Y-J, Wang H-Y et al. Possible risk factors associated with relpase in patients treated with neoadjuvant chemohormonal therapy for high risk prostate cancer. Open Prostate Cancer J 2011; 4: 1–8.

    Google Scholar 

  92. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41–51.

    CAS  Google Scholar 

  93. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338: 1465–1469.

    CAS  Google Scholar 

  94. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72: 3457–3462.

    CAS  Google Scholar 

  95. Chan SC, Li Y, Dehm SM . Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J Biol Chem 2012; 287: 19736–19749.

    CAS  Google Scholar 

  96. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM . Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 2013; 73: 483–489.

    CAS  Google Scholar 

  97. Geller J, Albert J . Effects of castration compared with total androgen blockade on tissue dihydrotestosterone (DHT) concentration in benign prostatic hyperplasia (BPH). Urol Res 1987; 15: 151–153.

    CAS  Google Scholar 

  98. Belanger B, Belanger A, Labrie F, Dupont A, Cusan L, Monfette G . Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: unique importance of extratesticular androgens in men. J Steroid Biochem 1989; 32: 695–698.

    CAS  Google Scholar 

  99. Mizokami A, Koh E, Fujita H, Maeda Y, Egawa M, Koshida K et al. The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res 2004; 64: 765–771.

    CAS  Google Scholar 

  100. Nishiyama T, Hashimoto Y, Takahashi K . The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 2004; 10: 7121–7126.

    CAS  Google Scholar 

  101. Page ST, Lin DW, Mostaghel EA, Hess DL, True LD, Amory JK et al. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J Clin Endocrinol Metab 2006; 91: 3850–3856.

    CAS  Google Scholar 

  102. Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007; 67: 5033–5041.

    CAS  Google Scholar 

  103. Geller J, Albert JD, Nachtsheim DA, Loza D . Comparison of prostatic cancer tissue dihydrotestosterone levels at the time of relapse following orchiectomy or estrogen therapy. J Urol 1984; 132: 693–696.

    CAS  Google Scholar 

  104. Geller J . Rationale for blockade of adrenal as well as testicular androgens in the treatment of advanced prostate cancer. Semin Oncol 1985; 12: 28–35.

    CAS  Google Scholar 

  105. Hofland J, van Weerden WM, Dits NF, Steenbergen J, van Leenders GJ, Jenster G et al. Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res 2010; 70: 1256–1264.

    CAS  Google Scholar 

  106. Cai C, Wang H, Xu Y, Chen S, Balk SP . Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer. Cancer Res 2009; 69: 6027–6032.

    CAS  Google Scholar 

  107. Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME et al. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 2004; 64: 2212–2221.

    CAS  Google Scholar 

  108. Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008; 68: 6407–6415.

    CAS  Google Scholar 

  109. Locke JA, Nelson CC, Adomat HH, Hendy SC, Gleave ME, Guns ES . Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J Steroid Biochem Mol Biol 2009; 115: 126–136.

    CAS  Google Scholar 

  110. Dillard PR, Lin MF, Khan SA . Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 2008; 295: 115–120.

    CAS  Google Scholar 

  111. Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011; 17: 5913–5925.

    CAS  Google Scholar 

  112. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 2010; 120: 4478–4492.

    CAS  Google Scholar 

  113. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541–1550.

    CAS  Google Scholar 

  114. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000; 6: 703–706.

    CAS  Google Scholar 

  115. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 173: 534–540.

    CAS  Google Scholar 

  116. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 2003; 21: 2673–2678.

    CAS  Google Scholar 

  117. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ . Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008; 68: 5469–5477.

    CAS  Google Scholar 

  118. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305–2313.

    CAS  Google Scholar 

  119. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69: 16–22.

    CAS  Google Scholar 

  120. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 2010; 107: 16759–16765.

    CAS  Google Scholar 

  121. Dehm SM, Tindall DJ . Alternatively spliced androgen receptor variants. Endocr Relat Cancer 2011; 18: R183–R196.

    CAS  Google Scholar 

  122. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–2730.

    CAS  Google Scholar 

  123. Zhang X, Morrissey C, Sun S, Ketchandji M, Nelson PS, True LD et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS ONE 2011; 6: e27970.

    CAS  Google Scholar 

  124. Li Y, Hwang TH, Oseth LA, Hauge A, Vessella RL, Schmechel SC et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 2012; 31: 4759–4767.

    CAS  Google Scholar 

  125. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 2010; 17: 535–546.

    CAS  Google Scholar 

  126. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 2007; 104: 8438–8443.

    CAS  Google Scholar 

  127. Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 2006; 10: 309–319.

    CAS  Google Scholar 

  128. Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ . Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res 2006; 66: 11047–11054.

    CAS  Google Scholar 

  129. Chen S, Gulla S, Cai C, Balk SP . Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012; 287: 8571–8583.

    CAS  Google Scholar 

  130. Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP . Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 2006; 103: 15969–15974.

    CAS  Google Scholar 

  131. Gordon V, Bhadel S, Wunderlich W, Zhang J, Ficarro SB, Mollah SA et al. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010; 24: 2267–2280.

    CAS  Google Scholar 

  132. Lin HK, Hu YC, Yang L, Altuwaijri S, Chen YT, Kang HY et al. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 2003; 278: 50902–50907.

    CAS  Google Scholar 

  133. Lin HK, Yeh S, Kang HY, Chang C . Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 2001; 98: 7200–7205.

    CAS  Google Scholar 

  134. Taneja SS, Ha S, Swenson NK, Huang HY, Lee P, Melamed J et al. Cell-specific regulation of androgen receptor phosphorylation in vivo. J Biol Chem 2005; 280: 40916–40924.

    CAS  Google Scholar 

  135. Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald WL, Lepor H et al. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene (e-pub ahead of print 17 September 2012; doi: 10.1038/onc.2012.412).

    Google Scholar 

  136. Gaughan L, Logan IR, Neal DE, Robson CN . Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res 2005; 33: 13–26.

    CAS  Google Scholar 

  137. Ha S, Ruoff R, Kahoud N, Logan SK, Franke TF . Androgen receptor levels are upregulated by Akt in prostate cancer. Endocr Relat Cancer 2011; 18: 245–255.

    CAS  Google Scholar 

  138. Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C . Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 2002; 21: 4037–4048.

    CAS  Google Scholar 

  139. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19: 575–586.

    CAS  Google Scholar 

  140. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 2011; 19: 792–804.

    CAS  Google Scholar 

  141. Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST et al. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 2006; 20: 503–515.

    CAS  Google Scholar 

  142. Chen S, Kesler CT, Paschal BM, Balk SP . Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem 2009; 284: 25576–25584.

    CAS  Google Scholar 

  143. Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 2009; 15: 270–282.

    CAS  Google Scholar 

  144. Gaughan L, Stockley J, Wang N, McCracken SR, Treumann A, Armstrong K et al. Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 2011; 39: 1266–1279.

    CAS  Google Scholar 

  145. Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B . Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol 2011; 25: 433–444.

    CAS  Google Scholar 

  146. Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001; 61: 4315–4319.

    CAS  Google Scholar 

  147. Gregory CW, Fei X, Ponguta LA, He B, Bill HM, French FS et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 2004; 279: 7119–7130.

    CAS  Google Scholar 

  148. Agoulnik IU, Vaid A, Bingman WE 3rd, Erdeme H, Frolov A, Smith CL et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 2005; 65: 7959–7967.

    CAS  Google Scholar 

  149. Agoulnik IU, Vaid A, Nakka M, Alvarado M, Bingman 3rd WE, Erdem H et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 2006; 66: 10594–10602.

    CAS  Google Scholar 

  150. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    CAS  Google Scholar 

  151. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125: 483–495.

    CAS  Google Scholar 

  152. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    CAS  Google Scholar 

  153. Kumar A, White TA, MacKenzie AP, Clegg N, Lee C, Dumpit RF et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci USA 2011; 108: 17087–17092.

    CAS  Google Scholar 

  154. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT . Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci USA 2005; 102: 6201–6206.

    CAS  Google Scholar 

  155. Bohl CE, Wu Z, Miller DD, Bell CE, Dalton JT . Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. J Biol Chem 2007; 282: 13648–13655.

    CAS  Google Scholar 

  156. Masiello D, Cheng S, Bubley GJ, Lu ML, Balk SP . Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem 2002; 277: 26321–26326.

    CAS  Google Scholar 

  157. Farla P, Hersmus R, Trapman J, Houtsmuller AB . Antiandrogens prevent stable DNA-binding of the androgen receptor. J Cell Sci 2005; 118: 4187–4198.

    CAS  Google Scholar 

  158. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009; 324: 787–790.

    CAS  Google Scholar 

  159. Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S, Dilhas A et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res 2012; 72: 1494–1503.

    CAS  Google Scholar 

  160. Shen HC, Shanmugasundaram K, Simon NI, Cai C, Wang H, Chen S et al. In silico discovery of androgen receptor antagonists with activity in castration resistant prostate cancer. Mol Endocrinol 2012; 26: 1836–1846.

    CAS  Google Scholar 

  161. Kang Z, Janne OA, Palvimo JJ . Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 2004; 18: 2633–2648.

    CAS  Google Scholar 

  162. Hodgson MC, Shen HC, Hollenberg AN, Balk SP . Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Mol Cancer Ther 2008; 7: 3187–3194.

    CAS  Google Scholar 

  163. Hodgson MC, Astapova I, Hollenberg AN, Balk SP . Activity of androgen receptor antagonist bicalutamide in prostate cancer cells is independent of NCoR and SMRT corepressors. Cancer Res 2007; 67: 8388–8395.

    CAS  Google Scholar 

  164. Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 2006; 124: 615–629.

    CAS  Google Scholar 

Download references

Acknowledgements

Work from the authors cited in this review has been supported by awards from the National Institutes of Health, Department of Defense Prostate Cancer Research Program and the Prostate Cancer Foundation. We apologize to the many colleagues whose work we were unable to discuss or cite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Balk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X., Cai, C., Chen, S. et al. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 33, 2815–2825 (2014). https://doi.org/10.1038/onc.2013.235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.235

Keywords

This article is cited by

Search

Quick links