Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dysregulation of BMI1 and microRNA-16 collaborate to enhance an anti-apoptotic potential in the side population of refractory mantle cell lymphoma

Abstract

The proto-oncogene BMI1 and its product, Bmi1, is overexpressed in various types of tumors, particularly in aggressive tumors and tumors resistant to conventional chemotherapy. BMI1/Bmi1 is also crucially involved in cancer-initiating cell maintenance, and is recurrently upregulated in mantle cell lymphoma (MCL), especially aggressive variants. Recently, side population (SP) cells were shown to exhibit tumor-initiating characteristics in various types of tumors. In this study, we show that recurrent MCL cases significantly exhibit upregulation of BMI1/Bmi1. We further demonstrate that clonogenic MCL SP shows such tumor-initiating characteristics as high tumorigenicity and self-renewal capability, and that BMI1 was upregulated in the SP from recurrent MCL cases and MCL cell lines. On screening for upstream regulators of BMI1, we found that expression of microRNA-16 (miR-16) was downregulated in MCL SP cells by regulating Bmi1 in the SPs, leading to reductions in tumor size following lymphoma xenografts. Moreover, to investigate downstream targets of BMI1 in MCL, we performed cross-linking/chromatin immunoprecipitation assay against MCL cell lines and demonstrated that Bmi1 directly regulated pro-apoptotic genes such as BCL2L11/Bim and PMAIP1/Noxa, leading to enhance anti-apoptotic potential of MCL. Finally, we found that a proteasome inhibitor bortezomib, which has been recently used for relapsed MCL, effectively induced apoptosis among MCL cells while reducing expression of Bmi1 and increasing miR-16 in MCL SP. These results suggest that upregulation of BMI1 and downregulation of miR-16 in MCL SP has a key role in the disease’s progression by reducing MCL cell apoptosis. Our results provide important new insight into the pathogenesis of MCL and strongly suggest that targeting BMI1/Bmi1 might be an effective approach to treating MCL, particularly refractory and recurrent cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jares P, Campo E . Advances in the understanding of mantle cell lymphoma. Br J Haematol 2008; 142: 149–165.

    Article  CAS  PubMed  Google Scholar 

  2. Swerdlow SH, Campo E, Seto M, Muller-Hermelink HK . Mantle cell lymphoma. In: Swerdloe AH, Campo E, Harris NL, Jaffe ES, Stein H, Thiele J, Vardiman JW eds.) World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues. IARC Press, Washington Lyon, 2008. 158–178.

    Google Scholar 

  3. Beà S, Tort F, Pinyol M, Puig X, Hernández L, Hernández S et al. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 2001; 61: 2409–2412.

    PubMed  Google Scholar 

  4. Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005; 24: 1348–1358.

    Article  CAS  PubMed  Google Scholar 

  5. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 2007; 109: 271–280.

    Article  CAS  PubMed  Google Scholar 

  6. Beà S, Salaverria I, Armengol L, Pinyol M, Fernández V, Hartmann EM et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 2009; 113: 3059–3069.

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Lohuizen M, Frasch M, Wientjens E, Berns A . Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 1991; 353: 353–355.

    Article  CAS  PubMed  Google Scholar 

  8. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 2004; 428: 337–341.

    Article  CAS  PubMed  Google Scholar 

  9. Hoenerhoff MJ, Chu I, Barkan D, Liu ZY, Datta S, Dimri GP et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene 2009; 28: 3022–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu Z, Min L, Chen D, Hao D, Duan Y, Qiu G et al. Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS One 2011; 6: e14648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 2011; 17: 7105–7015.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009; 119: 3626–3636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jagani Z, Wiederschain D, Loo A, He D, Mosher R, Fordjour P et al. The polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells. Cancer Res 2010; 70: 5528–5538.

    Article  CAS  PubMed  Google Scholar 

  16. Kimura M, Takenobu H, Akita N, Nakazawa A, Ochiai H, Shimozato O et al. Bmi1 regulates cell fate via tumor suppressor WWOX repression in small-cell lung cancer cells. Cancer Sci 2011; 102: 983–990.

    Article  CAS  PubMed  Google Scholar 

  17. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  18. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425: 962–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dovey JS, Zacharek SJ, Kim CF, Lees JA . Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci USA 2008; 105: 11857–11862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 2008; 68: 7742–7749.

    Article  CAS  PubMed  Google Scholar 

  22. Feuring-Buske M, Hogge DE . Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34+CD38- progenitor cells from patients with acute myeloid leukemia. Blood 2001; 97: 3882–3889.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  24. Goodell MA, Kinney-Freeman S, Camargo FD . Isolation and characterization of side population cells. Methods Mol Biol 2005; 290: 343–352.

    PubMed  Google Scholar 

  25. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 2005; 65: 6207–6219.

    Article  CAS  PubMed  Google Scholar 

  26. Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 2006; 24: 506–513.

    Article  CAS  PubMed  Google Scholar 

  27. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al. Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 2006; 103: 11154–11159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4827–4833.

    Article  CAS  PubMed  Google Scholar 

  29. Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 2007; 148: 1797–1803.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH . Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 2007; 67: 3716–3724.

    Article  CAS  PubMed  Google Scholar 

  31. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 2007; 67: 8216–8222.

    Article  CAS  PubMed  Google Scholar 

  32. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  33. Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  34. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008; 68: 9125–9130.

    Article  CAS  PubMed  Google Scholar 

  35. Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res 2009; 69: 9090–9095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J et al. MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 2011; 10: 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 2012; 31: 432–445.

    Article  CAS  PubMed  Google Scholar 

  39. Yamashita M, Kuwahara M, Suzuki A, Hirahara K, Shinnaksu R, Hosokawa H et al. Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene. J Exp Med 2008; 205: 1109–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M et al. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma. J Clin Oncol 2005; 23: 676–684.

    Article  CAS  PubMed  Google Scholar 

  41. Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 2006; 24: 4867–4874.

    Article  PubMed  Google Scholar 

  42. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Biom M, Zevenhoven J et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 2007; 12: 328–341.

    Article  CAS  PubMed  Google Scholar 

  44. Douglas D, Hsu JH, Hung L, Cooper A, Abdueva D, van Doorninck J et al. BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res 2008; 68: 6507–6515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tagawa H, Seto M . A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 2005; 19: 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  46. Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood 2008; 112: 822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010; 115: 2630–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K . MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009; 113: 396–402.

    Article  CAS  PubMed  Google Scholar 

  49. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ofir M, Hacohen D, Ginsberg D . miR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 2011; 9: 440–447.

    Article  CAS  PubMed  Google Scholar 

  51. Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang THM, Elizalde PV . Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res 2012; 14: R77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pouliot LM, Chen YC, Bai J, Guha R, Martin SE, Gottesman MM et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res 2012; 72: 5945–5955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ . MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and Interacts with Pim-1. PLoS One 2012; 7: e44546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou R, Li X, Hu G, Gong AY, Drescher KM, Chen XM . MiR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene. PLoS One 2012; 7: e30772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Young LE, Moore AE, Sokol L, Meisner-Kober N, Dixon DA . The mRNA stability factor HuR inhibits MicroRNA-16 targeting of COX-2. Mol Cancer Res 2012; 10: 167–180.

    Article  CAS  PubMed  Google Scholar 

  56. Pothof J, Verkaik NS, van IJcken W, Wiemer EA, Ta VT, van der Horst GT et al. MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 2009; 28: 2090–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 2010; 70: 7176–7186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/gamma(c)(null)mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a Grant-in-Aid from the Japan Society for the Promotion of Science (HT). We wish to express our appreciation to Ms E Kobayashi, Y Abe, K Iwamoto, H Kataho and Mr J Yamashita for their outstanding technical assistance, Drs T Nanjo (Akita University, Akita, Japan), S Nakamura (Nagoya University, Nagoya, Japan) and R Ichinohasama (Tohoku University, Sendai, Japan) for their histological and/or clinical diagnosis of MCL. Drs N Takahashi (Akita University), N Takahashi (Akita University), Y Michishita (Akita University), K Honda (Akita University), M Kume (Hiraka General Hospital), H Oyagi (Hiraka General Hospital), M Katayama (Aichi Cancer Center) and F Arakawa (Kurume University) for collection of primary lymphoma samples and constructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Tagawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teshima, K., Nara, M., Watanabe, A. et al. Dysregulation of BMI1 and microRNA-16 collaborate to enhance an anti-apoptotic potential in the side population of refractory mantle cell lymphoma. Oncogene 33, 2191–2203 (2014). https://doi.org/10.1038/onc.2013.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.177

Keywords

This article is cited by

Search

Quick links