Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect

Abstract

Inadvertent mammalian tissue exposures to low doses of ionizing radiation (IR) after radiation accidents, remediation of radioactive-contaminated areas, space travel or a dirty bomb represent an interesting trauma to an organism. Possible low-dose IR-induced bystander effects could impact our evaluation of human health effects, as cells within tissue are not equally damaged after doses of IR 10 cGy. To understand tissue responses after low IR doses, we generated a reporter system using the human clusterin promoter fused to firefly luciferase (hCLUp-Luc). Secretory clusterin (sCLU), an extracellular molecular chaperone, induced by low doses of cytotoxic agents, clears cell debris. Low-dose IR (2 cGy) exposure induced hCLUp-Luc activity with peak levels at 96 h, consistent with endogenous sCLU levels. As doses increased (1 Gy), sCLU induction amplitudes increased and time-to-peak response decreased. sCLU expression was stimulated by insulin-like growth factor-1, but suppressed by p53. Responses in transgenic hCLUp-Luc reporter mice after low IR doses showed that specific tissues (that is, colon, spleen, mammary, thymus and bone marrow) of female mice induced hCLUp-Luc activity more than male mice after whole body (10 cGy) irradiation. Tissue-specific, non-linear dose- and time-responses of hCLUp-Luc and endogenous sCLU levels were noted. Colon maintained homeostatic balance after 10 cGy. Bone marrow responded with delayed, but prolonged and elevated expression. Intraperitoneal administration of α-transforming growth factor (TGF)β1 (1D11), but not control (13C4) antibodies, immediately following IR exposure abrogated CLU induction responses. Induction in vivo also correlated with Smad signaling by activated TGFβ1 after IR. Mechanistically, media with elevated sCLU levels suppressed signaling, blocked apoptosis and increased survival of TGFβ1-exposed tumor or normal cells. Thus, sCLU is a pro-survival bystander factor that abrogates TGFβ1 signaling and most likely promotes wound healing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Goetz E, Shankar S, Zou Y, Morales X, Lou X, Araki S et al. ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability. Oncogene 2011; 30: 3745–3754.

    Article  CAS  Google Scholar 

  2. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107: 4153–4158.

    Article  CAS  Google Scholar 

  3. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT . ATM activation by oxidative stress. Science 2010; 330: 517–521.

    Article  CAS  Google Scholar 

  4. Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T . Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 2010; 327: 1657–1661.

    Article  CAS  Google Scholar 

  5. Cornelissen B, Kersemans V, Darbar S, Thompson J, Shah K, Sleeth K . Imaging DNA damage in vivo using {gamma}H2AX-targeted immunoconjugates. Cancer Res 2011; 71: 4539–4549.

    Article  CAS  Google Scholar 

  6. Redon CE, Dickey JS, Bonner WM, Sedelnikova OA . gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 2009; 43: 1171–1178.

    Article  CAS  Google Scholar 

  7. Bhogal N, Kaspler P, Jalali F, Hyrien O, Chen R, Hill RP et al. Late residual gamma-H2AX foci in murine skin are dose responsive and predict radiosensitivity in vivo. Radiat Res 2010; 173: 1–9.

    Article  CAS  Google Scholar 

  8. Lee TK, Allison RR, O’Brien KF, Naves JL, Karlsson UL, Wiley AL . Persistence of micronuclei in lymphocytes of cancer patients after radiotherapy. Radiat Res 2002; 157: 678–684.

    Article  CAS  Google Scholar 

  9. Nachtrab U, Oppitz U, Flentje M, Stopper H . Radiation-induced micronucleus formation in human skin fibroblasts of patients showing severe and normal tissue damage after radiotherapy. Int J Radiat Biol 1998; 73: 279–287.

    Article  CAS  Google Scholar 

  10. Lindholm C, Stricklin D, Jaworska A, Koivistoinen A, Paile W, Arvidsson E et al. Premature chromosome condensation (PCC) assay for dose assessment in mass casualty accidents. Radiat Res 2010; 173: 71–78.

    Article  CAS  Google Scholar 

  11. Freund A, Patil CK, Campisi J . p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. Embo J 2011; 30: 1536–1548.

    Article  CAS  Google Scholar 

  12. Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 2011; 124: 68–81.

    Article  CAS  Google Scholar 

  13. Arufe MC, De la Fuente A, Mateos J, Fuentes I, De Toro FJ, Blanco FJ . Analysis of the chondrogenic potential and secretome of mesenchymal stem cells derived from human umbilical cord stroma. Stem Cells Dev 2011; 20: 1199–1212.

    Article  CAS  Google Scholar 

  14. Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo LD et al. Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 2005; 280: 14212–14221.

    Article  CAS  Google Scholar 

  15. Criswell T, Klokov D, Beman M, Lavik JP, Boothman DA . Repression of IR-inducible clusterin expression by the p53 tumor suppressor protein. Cancer Biol Ther 2003; 2: 372–380.

    Article  CAS  Google Scholar 

  16. Cardona-Gomez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM . Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Brain Res Rev 2001; 37: 320–334.

    Article  CAS  Google Scholar 

  17. Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I et al. Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28: 4247–4254.

    Article  CAS  Google Scholar 

  18. Zoubeidi A, Chi K, Gleave M . Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clin Cancer Res 2010; 16: 1088–1093.

    Article  CAS  Google Scholar 

  19. Sutton D, Kim S, Shuai X, Leskov K, Marques JT, Williams BR et al. Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing radiation lethality in human MCF-7 breast cancer cells in vitro. Int J Nanomedicine 2006; 1: 155–162.

    Article  CAS  Google Scholar 

  20. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY . Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 2005; 7: 909–915.

    Article  CAS  Google Scholar 

  21. Araki S, Israel S, Leskov KS, Criswell TL, Beman M, Klokov DY et al. Clusterin proteins: stress-inducible polypeptides with proposed functions in multiple organ dysfunction. BJR Suppl 2005; 27: 106–113.

    Article  Google Scholar 

  22. Shannan B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W et al. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 2006; 13: 12–19.

    Article  CAS  Google Scholar 

  23. Snyder AR . Review of radiation-induced bystander effects. Hum Exp Toxicol [Review] 2004; 23: 87–89.

    Article  Google Scholar 

  24. Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ et al. Nuclear clusterin/XIP8, an X-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA 2000; 97: 5907–5912.

    Article  CAS  Google Scholar 

  25. Yang CR, Yeh S, Leskov K, Odegaard E, Hsu HL, Chang C et al. Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res 1999; 27: 2165–2174.

    Article  CAS  Google Scholar 

  26. Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D et al. TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest 2010; 120: 290–302.

    Article  CAS  Google Scholar 

  27. Davis TW, Wilson-Van Patten C, Meyers M, Kunugi KA, Cuthill S, Reznikoff C et al. Defective expression of the DNA mismatch repair protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation. Cancer Res 1998; 58: 767–778.

    CAS  PubMed  Google Scholar 

  28. Trougakos IP, Djeu JY, Gonos ES, Boothman DA . Advances and challenges in basic and translational research on clusterin. Cancer Res 2009; 69: 403–406.

    Article  CAS  Google Scholar 

  29. Jin G, Howe PH . Transforming growth factor beta regulates clusterin gene expression via modulation of transcription factor c-Fos. Eur J Biochem 1999; 263: 534–542.

    CAS  PubMed  Google Scholar 

  30. Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 2011; 19: 640–651.

    Article  CAS  Google Scholar 

  31. Dasch JR, Pace DR, Waegell W, Inenaga D, Ellingsworth L . Monoclonal antibodies recognizing transforming growth factor-beta. Bioactivity neutralization and transforming growth factor beta 2 affinity purification. J Immunol 1989; 142: 1536–1541.

    CAS  PubMed  Google Scholar 

  32. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 2011; 286: 8655–8665.

    Article  CAS  Google Scholar 

  33. Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ et al. Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res 2006; 66: 10861–10869.

    Article  CAS  Google Scholar 

  34. Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011; 30: 1470–1480.

    Article  CAS  Google Scholar 

  35. Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW . TGF-{beta} signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Nat Acad Sci USA 2011; 108: 8668–8673.

    Article  CAS  Google Scholar 

  36. He Q, Montalbano J, Corcoran C, Jin W, Huang Y, Sheikh MS . Effect of Bax deficiency on death receptor 5 and mitochondrial pathways during endoplasmic reticulum calcium pool depletion-induced apoptosis. Oncogene 2003; 22: 2674–2679.

    Article  CAS  Google Scholar 

  37. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 2009; 15: 48–59.

    Article  CAS  Google Scholar 

  38. Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA . Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 2003; 22: 5813–5827.

    Article  CAS  Google Scholar 

  39. Garkavtsev I, Chauhan VP, Wong HK, Mukhopadhyay A, Glicksman MA, Peterson RT et al. Dehydro-{alpha}-lapachone, a plant product with antivascular activity. Proc Natl Acad Sci USA 2011; 108: 11596–115601.

    Article  CAS  Google Scholar 

  40. Peretz S, Jensen R, Baserga R, Glazer PM . ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA 2001; 98: 1676–1681.

    Article  CAS  Google Scholar 

  41. Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC et al. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 1997; 147: 418–427.

    Article  CAS  Google Scholar 

  42. Shahrabani-Gargir L, Pandita TK, Werner H . Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 2004; 145: 5679–5687.

    Article  CAS  Google Scholar 

  43. Klokov D, Criswell T, Leskov KS, Araki S, Mayo L, Boothman DA . IR-inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects. Mutat Res 2004; 568: 97–110.

    Article  CAS  Google Scholar 

  44. Wagner MW, Li LS, Morales JC, Galindo CL, Garner HR, Bornmann WG et al. Role of c-Abl kinase in DNA mismatch repair-dependent G2 cell cycle checkpoint arrest responses. J Biol Chem 2008; 283: 21382–21393.

    Article  CAS  Google Scholar 

  45. Li LS, Morales JC, Hwang A, Wagner MW, Boothman DA . DNA mismatch repair-dependent activation of c-Abl/p73alpha/GADD45alpha-mediated apoptosis. J Biol Chem 2008; 283: 21394–21403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DOE Grant #DE-FG02-06ER64186 to DAB, a pilot grant from NASA to develop BLI imaging of hCLUp-Luc to DW and DAB, a DOD BCRP pre-doctoral fellowship (W81XWH-06-0748) to E.M.G and a DOD PCRP post-doctoral fellowship (X8IXWH-09-1-0168) to XL. We thank Ms Lakshmi Sampath and Mr Andrew Bruening for their help with this work. We are also grateful to Dr Mary Helen Barcellos-Hoff for her advice with the animal experiments. We are also grateful to the Robert B. and Virginia Payne Endowment to DAB. This is CSCN 065 and used the Flow Cytometry and Biostatistics Cores, Simmons Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Boothman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klokov, D., Leskov, K., Araki, S. et al. Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect. Oncogene 32, 479–490 (2013). https://doi.org/10.1038/onc.2012.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.64

Keywords

This article is cited by

Search

Quick links