Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine

Abstract

Epithelial ovarian cancer (EOC) is a highly lethal gynaecological malignancy. Cisplatin is the basal chemotherapeutic agent used to treat EOC, but resistance to cisplatin leads to chemotherapy failure. MicroRNAs are a novel class of regulators that function by controlling gene expression at the post-transcriptional level. Several recent reports have identified some microRNAs that are related to chemotherapy sensitivity. In this study, we found two microRNAs miR-152 and miR-185 that were significantly downregulated in the cisplatin-resistant ovarian cell lines SKOV3/DDP and A2780/DDP, compared with their sensitive parent line SKOV3 and A2780, respectively. Subsequently, the roles of miR-152 and miR-185 were evaluated in vitro and in vivo. The overexpression of miR-152 or miR-185 increased cisplatin sensitivity of SKOV3/DDP and A2780/DDP cells by inhibiting proliferation and promoting apoptosis, then we further confirmed that these miRNAs functioned through suppressing DNA methyltransferase 1 (DNMT1) directly. Concordantly, CD-1/CD-1 nude mice that were injected intraperitoneally with SKOV3/DDP cells transfected with miR-152 mimics exhibited upregulated cisplatin sensitivity in vivo. Interestingly, we found that there were no significant changes in the expression of these two microRNAs after treatment with decitabine (DAC), a traditional epigenetic therapeutic agent, suggesting these miRNAs represented two new regulators independent of DAC. Finally, the survival assay in A549 and HepG2 cells revealed that the two microRNAs involved in cisplatin sensitivity were related to cell types. Our results indicated that miR-152 and miR-185 were involved in ovarian cancer cisplatin resistance in vitro and in vivo by targeting DNMT1 directly. These molecules may serve as potential epigenetic therapeutic targets in other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Singh RK, Lange TS, Kim KK, Shaw SK, Brard L . A novel indole ethyl isothiocyanate (7Me-IEITC) with anti-proliferative and pro-apoptotic effects on platinum-resistant human ovarian cancer cells. Gynecol Oncol 2008; 109: 240–249.

    Article  CAS  Google Scholar 

  2. Cho KR, Shih Ie M . Ovarian cancer. Annu Rev Pathol 2009; 4: 287–313.

    Article  CAS  Google Scholar 

  3. Ozols RF, Young RC . Chemotherapy of ovarian cancer. Semin Oncol 1991; 18: 222–232.

    CAS  Google Scholar 

  4. Selvakumaran M, Bao R, Crijns AP, Connolly DC, Weinstein JK, Hamilton TC . Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res 2001; 61: 1291–1295.

    CAS  Google Scholar 

  5. Fung-Kee-Fung M, Oliver T, Elit L, Oza A, Hirte HW, Bryson P . Optimal chemotherapy treatment for women with recurrent ovarian cancer. Curr Oncol 2007; 14: 195–208.

    Article  CAS  Google Scholar 

  6. Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P et al. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2009; 2: 34.

    Article  Google Scholar 

  7. Lenzi R, Frost P, Abbruzzese JL . Modulation of cisplatin resistance by 2′-deoxy-5-azacytidine in human ovarian tumor cell lines. Anticancer Res 1994; 14: 247–251.

    Google Scholar 

  8. Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R . Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 2000; 60: 6039–6044.

    CAS  Google Scholar 

  9. Fang F, Balch C, Schilder J, Breen T, Zhang S, Shen C et al. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010; 116: 4043–4053.

    Article  CAS  Google Scholar 

  10. Tohyama K . Utility of DNA methyltransferase inhibitors for the treatment of myelodysplastic syndromes. Curr Pharm Des 2012; 18: 3190–3197.

    Article  CAS  Google Scholar 

  11. Blum W, Schwind S, Tarighat SS, Geyer S, Eisfeld AK, Whitman S et al. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood 2012; 119: 6025–6031.

    Article  CAS  Google Scholar 

  12. Yang D, Torres CM, Bardhan K, Zimmerman M, McGaha TL, Liu K . Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to Fas ligand-induced apoptosis in vitro and tumor suppression in vivo. J Immunol 2012; 188: 4441–4449.

    Article  CAS  Google Scholar 

  13. Yi TZ, Li J, Han X, Guo J, Qu Q, Guo L et al. DNMT inhibitors and HDAC inhibitors regulate E-cadherin and Bcl-2 expression in endometrial carcinoma in vitro and in vivo. Chemotherapy 2012; 58: 19–29.

    Article  CAS  Google Scholar 

  14. Luszczek W, Cheriyath V, Mekhail TM, Borden EC . Combinations of DNA methyltransferase and histone deacetylase inhibitors induce DNA damage in small cell lung cancer cells: correlation of resistance with IFN-stimulated gene expression. Mol Cancer Ther 2010; 9: 2309–2321.

    Article  CAS  Google Scholar 

  15. Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y et al. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 2012; 72: 2197–2205.

    Article  CAS  Google Scholar 

  16. Blum KA, Liu Z, Lucas DM, Chen P, Xie Z, Baiocchi R et al. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br J Haematol 2010; 150: 189–195.

    CAS  Google Scholar 

  17. Kantarjian HM, Issa JP . Decitabine dosing schedules. Semin Hematol 2005; 42: S17–S22.

    Article  CAS  Google Scholar 

  18. Malizia AP, Wang DZ . MicroRNAs in cardiomyocyte development. Wiley Interdiscip Rev Syst Biol Med 2011; 3: 183–190.

    Article  CAS  Google Scholar 

  19. Holleman A, Chung I, Olsen RR, Kwak B, Mizokami A, Saijo N et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene 2011; 30: 4386–4398.

    Article  CAS  Google Scholar 

  20. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008; 283: 31079–31086.

    Article  CAS  Google Scholar 

  21. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008; 7: 2152–2159.

    Article  CAS  Google Scholar 

  22. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008; 68: 425–433.

    Article  CAS  Google Scholar 

  23. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008; 68: 10307–10314.

    Article  CAS  Google Scholar 

  24. Zhou X, Zhao F, Wang ZN, Song YX, Chang H, Chiang Y et al. Altered expression of miR-152 and miR-148a in ovarian cancer is related to cell proliferation. Oncol Rep 2012; 27: 447–454.

    CAS  Google Scholar 

  25. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 2011; 71: 6450–6462.

    Article  CAS  Google Scholar 

  26. Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 2011; 10: 124.

    Article  CAS  Google Scholar 

  27. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 2009; 7: e1000238.

    Article  Google Scholar 

  28. Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 2011; 129: 2600–2610.

    Article  CAS  Google Scholar 

  29. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G . Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 2009; 379: 726–731.

    Article  CAS  Google Scholar 

  30. Barabas K, Milner R, Lurie D, Adin C . Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol 2008; 6: 1–18.

    Article  CAS  Google Scholar 

  31. Basu A, Krishnamurthy S . Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 2010; 2010.

  32. Kelland L . The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7: 573–584.

    Article  CAS  Google Scholar 

  33. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA . DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008; 8: 193–204.

    Article  CAS  Google Scholar 

  34. Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC . Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res 2003; 63: 1311–1316.

    CAS  Google Scholar 

  35. Ishida S, Lee J, Thiele DJ, Herskowitz I . Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 2002; 99: 14298–14302.

    Article  CAS  Google Scholar 

  36. Kwon MJ, Shin YK . Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 2011; 12: 983–1008.

    Article  CAS  Google Scholar 

  37. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  Google Scholar 

  38. Chan TA, Glockner S, Yi JM, Chen W, Van Neste L, Cope L et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med 2008; 5: e114.

    Article  Google Scholar 

  39. Tang M, Xu W, Wang Q, Xiao W, Xu R . Potential of DNMT and its Epigenetic Regulation for Lung Cancer Therapy. Curr Genomics 2009; 10: 336–352.

    Article  CAS  Google Scholar 

  40. Fan H, Zhao ZJ, Cheng J, Su XW, Wu QX, Shan YF . Overexpression of DNA methyltransferase 1 and its biological significance in primary hepatocellular carcinoma. World J Gastroenterol 2009; 15: 2020–2026.

    Article  CAS  Google Scholar 

  41. Qin T, Jelinek J, Si J, Shu J, Issa JP . Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 2009; 113: 659–667.

    Article  CAS  Google Scholar 

  42. Matei DE, Nephew KP . Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. Gynecol Oncol 2010; 116: 195–201.

    Article  CAS  Google Scholar 

  43. Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C et al. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg 2010; 14: 1170–1179.

    Article  Google Scholar 

  44. Huang J, Wang Y, Guo Y, Sun S . Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 2010; 52: 60–70.

    Article  CAS  Google Scholar 

  45. Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol 2011; 39: 311–318.

    Google Scholar 

  46. Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y et al. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 2010; 29: 4971–4979.

    Article  CAS  Google Scholar 

  47. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 2011; 71: 225–233.

    Article  CAS  Google Scholar 

  48. Zhang J, Han C, Wu T . MicroRNA-26a promotes cholangiocarcinoma growth by activating beta-catenin. Gastroenterology 2012; 143: e248.

    Google Scholar 

  49. Fu X, Tian J, Zhang L, Chen Y, Hao Q . Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett 2012; 586: 1279–1286.

    Article  CAS  Google Scholar 

  50. Zhao Z, Wang J, Tang J, Liu X, Zhong Q, Wang F et al. JNK- and Akt-mediated Puma expression in the apoptosis of cisplatin-resistant ovarian cancer cells. Biochem J 2012; 444: 291–301.

    Article  CAS  Google Scholar 

  51. Sangodkar J, Dhawan NS, Melville H, Singh VJ, Yuan E, Rana H et al. Targeting the FOXO1/KLF6 axis regulates EGFR signaling and treatment response. J Clin Invest 2012; 122: 2637–2651.

    Article  CAS  Google Scholar 

  52. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010; 70: 367–377.

    Article  CAS  Google Scholar 

  53. Liao JM, Lu H . Autoregulatory suppression of c-Myc by miR-185-3p. J Biol Chem 2011; 286: 33901–33909.

    Article  CAS  Google Scholar 

  54. Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasuda J . MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 2009; 4: e6677.

    Article  Google Scholar 

  55. Glasspool RM, Teodoridis JM, Brown R . Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer 2006; 94: 1087–1092.

    Article  CAS  Google Scholar 

  56. Chen H, Hardy TM, Tollefsbol TO . Epigenomics of ovarian cancer and its chemoprevention. Front Genet 2011; 2: 67.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province for youth (QC2010002) and for outstanding youth (JC201110), the Natural Science Foundation of China (81101373/81270511/81001033), the Science Foundation of Health Department of Heilongjiang Province(2012-525) and the Science Foundation of the First Affiliated Hospital of Harbin Medical University (2009Y24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Zhang or X Gao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Ma, N., Wang, D. et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 33, 378–386 (2014). https://doi.org/10.1038/onc.2012.575

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.575

Keywords

This article is cited by

Search

Quick links