Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis

Abstract

The anaphase-promoting complex/cyclosome (APC/C) is an ubiquitin ligase that functions during mitosis. Here we identify the transcriptional regulator, transcriptional intermediary factor 1γ, TIF1γ, as an APC/C-interacting protein that regulates APC/C function. TIF1γ is not a substrate for APC/C-dependent ubiquitylation but instead, associates specifically with the APC/C holoenzyme and Cdc20 to affect APC/C activity and progression through mitosis. RNA interference studies indicate that TIF1γ knockdown results in a specific reduction in APC/C ubiquitin ligase activity, the stabilization of APC/C substrates, and an increase in the time taken for cells to progress through mitosis from nuclear envelope breakdown to anaphase. TIF1γ knockdown cells are also characterized by the inappropriate presence of cyclin A at metaphase, and an increase in the number of cells that fail to undergo metaphase-to-anaphase transition. Expression of a small interfering RNA-resistant TIF1γ species relieves the mitotic phenotype imposed by TIF1γ knockdown and allows for mitotic progression. Binding studies indicate that TIF1γ is also a component of the APC/C-mitotic checkpoint complex (MCC), but is not required for MCC dissociation from the APC/C once the spindle assembly checkpoint (SAC) is satisfied. TIF1γ inactivation also results in chromosome misalignment at metaphase and SAC activation; inactivation of the SAC relieves the mitotic block imposed by TIF1γ knockdown. Together these data define novel functions for TIF1γ during mitosis and suggest that a reduction in APC/C ubiquitin ligase activity promotes SAC activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Peters JM . The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7: 644–656.

    Article  CAS  Google Scholar 

  2. Musacchio A, Salmon ED . The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8: 379–393.

    Article  CAS  Google Scholar 

  3. Yu H . Cdc20: A WD40 activator for a cell cycle degradation machine. Mol Cell 2007; 27: 3–16.

    Article  CAS  Google Scholar 

  4. Turnell AS, Stewart GS, Grand RJ, Rookes SM, Martin A, Yamano H et al. The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 2005; 438: 690–695.

    Article  CAS  Google Scholar 

  5. Turnell AS, Mymryk JS . Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. Br J Cancer 2006; 95: 555–560.

    Article  CAS  Google Scholar 

  6. Townsend K, Mason H, Blackford AN, Miller ES, Chapman JR, Sedgwick GG et al. Mediator of DNA damage checkpoint 1 regulates mitotic progression. J Biol Chem 2009; 284: 33939–33948.

    Article  CAS  Google Scholar 

  7. Venturini L, You J, Stadler M, Galien R, Lallemand V, Koken MH et al. TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 1999; 18: 1209–1217.

    Article  CAS  Google Scholar 

  8. Peng H, Feldman I, Rauscher FJ . Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol 2002; 320: 629–644.

    Article  CAS  Google Scholar 

  9. Klugbauer S, Rabes HM . The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999; 18: 4388–4393.

    Article  CAS  Google Scholar 

  10. Ransom DG, Bahary N, Niss K, Traver D, Burns C, Trede NS et al. The zebrafish moonshine gene encodes transcriptional intermediary factor 1 gamma, an essential regulator of hematopoiesis. PLoS Biol 2004; 2: 1188–1196.

    Article  CAS  Google Scholar 

  11. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J . Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 2006; 125: 929–941.

    Article  CAS  Google Scholar 

  12. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M et al. Germ-layer specification and control of cell growth by ectodermin, a Smad4 ubiquitin ligase. Cell 2005; 121: 87–99.

    Article  CAS  Google Scholar 

  13. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 2009; 136: 123–135.

    Article  CAS  Google Scholar 

  14. Shimwell NJ, Martin A, Bruton RK, Blackford AN, Gallimore PH, Turnell AS et al. Adenovirus 5 early region 1A associates with insulin receptor substrates. Oncogene 2009; 28: 686–697.

    Article  CAS  Google Scholar 

  15. Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK . Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 2001; 105: 645–655.

    Article  CAS  Google Scholar 

  16. Miller JJ, Summers MK, Hansen DV, Nachury MV, Lehman NL, Loktev A et al. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev 2006; 20: 2410–2420.

    Article  CAS  Google Scholar 

  17. Mansfeld J, Collin P, Collins MO, Choudhary JS, Pines J . APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol 2011; 13: 1234–1243.

    Article  CAS  Google Scholar 

  18. Hunt T, Luca FC, Ruderman JV . The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J Cell Biol 1992; 116: 707–724.

    Article  CAS  Google Scholar 

  19. Di Fiore B, Pines J . How cyclin A destruction escapes the spindle assembly checkpoint. J Cell Biol 2010; 190: 501–509.

    Article  CAS  Google Scholar 

  20. Matyskiela ME, Morgan DO . Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol Cell 2009; 34: 68–80.

    Article  CAS  Google Scholar 

  21. Izawa D, Pines J . How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat Cell Biol 2011; 13: 223–233.

    Article  CAS  Google Scholar 

  22. den Elzen N, Pines J . Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 2001; 153: 121–136.

    Article  CAS  Google Scholar 

  23. Hayes MJ, Kimata Y, Wattam SL, Lindon C, Mao G, Yamano H et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nat Cell Biol 2006; 8: 607–614.

    Article  CAS  Google Scholar 

  24. Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell 2008; 30: 290–302.

    Article  CAS  Google Scholar 

  25. Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh DC et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 2010; 18: 382–395.

    Article  CAS  Google Scholar 

  26. Reddy SK, Rape M, Margansky WA, Kirschner MW . Ubiquitination by the anaphase promoting complex drives spindle checkpoint inactivation. Nature 2007; 446: 921–925.

    Article  CAS  Google Scholar 

  27. Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 2007; 446: 876–881.

    Article  CAS  Google Scholar 

  28. Ge S, Skaar JR, Pagano M . APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle 2009; 8: 167–171.

    Article  CAS  Google Scholar 

  29. Nilsson J, Yekezare M, Minshull J, Pines J . The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 2008; 10: 1411–1420.

    Article  CAS  Google Scholar 

  30. Chung E, Chen RH . Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol 2003; 5: 748–753.

    Article  CAS  Google Scholar 

  31. D'Angiolella V, Mari C, Nocera D, Rametti L, Grieco D . The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev 2003; 17: 2520–2525.

    Article  CAS  Google Scholar 

  32. Qi W, Yu H . KEN box-dependent degradation of the Bub1 spindle checkpoint kinase by the anaphase-promoting complex/cyclosome. J Biol Chem 2007; 282: 3672–3679.

    Article  CAS  Google Scholar 

  33. Choi E, Choe H, Min J, Choi JY, Kim J, Lee H . BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J 2009; 28: 2077–2089.

    Article  CAS  Google Scholar 

  34. Ricke RM, Jeganathan KB, van Deursen JM . Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. J Cell Biol 2011; 193: 1049–1064.

    Article  CAS  Google Scholar 

  35. Wan Y, Liu X, Kirschner MW . The anaphase-promoting complex mediates TGF-β signaling by targeting SnoN for destruction. Mol Cell 2001; 8: 1027–1039.

    Article  CAS  Google Scholar 

  36. Zhang L, Fujita T, Wu G, Xiao X, Wan Y . Phosphorylation of APC/Cdc27 is involved in TGF-β signaling. J Biol Chem 2011; 286: 10041–10050.

    Article  CAS  Google Scholar 

  37. Yang Y, Kim AH, Yamada T, Wu B, Bilimoria PM, Ikeuchi Y et al. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 2009; 326: 575–578.

    Article  CAS  Google Scholar 

  38. Massagué J, Gomis RR . The logic of TGFβ signaling. Febbs Lett 2006; 580: 2811–2820.

    Article  Google Scholar 

  39. Chaudhry MA, Chodosh LA, McKenna WG, Muschel RJ . Gene expression profiling of HeLa cells in G1 or G2 phases. Oncogene 2002; 21: 1934–1942.

    Article  CAS  Google Scholar 

  40. Xu YX, Manley JL . New insights into mitotic chromosome condensation: a role for the prolyl isomerase Pin1. Cell Cycle 2007; 23: 2896–2901.

    Article  Google Scholar 

  41. Blackford AN, Patel RN, Forrester NA, Theil K, Groitl P, Stewart GS et al. Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. Proc Natl Acad Sci USA 2010; 107: 12251–12256.

    Article  CAS  Google Scholar 

  42. Rasti M, Grand RJA, Yousef YF, Shuen M, Mymryk JS, Gallimore PH et al. Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription. EMBO J 2006; 25: 2710–2722.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Francis Barr, Andrew Fry, Stefano Piccolo, Frank Rauscher III, Hughes de Thé and Hiroyuki Yamano for reagents. This work was funded by CR-UK (C10000/A7542) and The University of Birmingham, College of Medical and Dental Sciences Research Development Fund. JN is supported by The Danish Cancer Society and the Lundbeck Foundation.

Author contributions: GGS and AST initiated the study; GGS, JN and AST designed the study; GGS, KT, AM, NJS, JN and AST performed experiments and analyzed data. RJAG and GSS helped supervise the study. AST wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Turnell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedgwick, G., Townsend, K., Martin, A. et al. Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis. Oncogene 32, 4622–4633 (2013). https://doi.org/10.1038/onc.2012.501

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.501

Keywords

This article is cited by

Search

Quick links