Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays

Abstract

Measuring the states of cell signaling pathways in tumor samples promises to advance the understanding of oncogenesis and identify response biomarkers. Here, we describe the use of Reverse Phase Protein Arrays (RPPAs or RPLAs) to profile signaling proteins in 56 breast cancers and matched normal tissue. In RPPAs, hundreds to thousands of lysates are arrayed in dense regular grids and each grid is probed with a different antibody (100 in the current work, of which 71 yielded strong signals with breast tissue). Although RPPA technology is quite widely used, measuring changes in phosphorylation reflective of protein activation remains challenging. Using repeat deposition and well-validated antibodies, we show that diverse patterns of phosphorylation can be monitored in tumor samples and changes mapped onto signaling networks in a coherent fashion. The patterns are consistent with biomarker-based classification of breast cancers and known mechanisms of oncogenesis. We explore in detail one tumor-associated pattern that involves changes in the abundance of the Axl receptor tyrosine kinase (RTK) and phosphorylation of the cMet RTK. Both cMet and Axl have been implicated in breast cancer, or in resistance to anticancer drugs, but the two RTKs are not known to be linked functionally. Protein depletion and overexpression studies in a ‘triple-negative’ breast cell line reveal cross talk between Axl and cMet involving Axl-mediated modification of cMet, a requirement for cMet in efficient and timely signal transduction by the Axl ligand Gas6 and the potential for the two receptors to interact physically. These findings have potential therapeutic implications, as they imply that bi-specific receptor inhibitors (for example, ATP-competitive small-kinase inhibitors such as GSK1363089, BMS-777607 or MP470) may be more efficacious than the mono-specific therapeutic antibodies currently in development (for example, Onartuzumab).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  Google Scholar 

  2. Kolch W, Pitt A . Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 2010; 10: 618–629.

    Article  CAS  Google Scholar 

  3. Sevecka M, MacBeath G . State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods 2006; 3: 825–831.

    Article  CAS  Google Scholar 

  4. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Gene 2001; 20: 1981–1989.

    CAS  Google Scholar 

  5. Tibes R, Qiu YH, Lu Y, Hennessy B, Andreeff M, Mills GB et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006; 5: 2512.

    Article  CAS  Google Scholar 

  6. Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 2003; 3: 2142–2146.

    Article  CAS  Google Scholar 

  7. VanMeter A, Signore M, Pierobon M, Espina V, Liotta LA, Petricoin I et al. Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 2007; 7: 625–633.

    Article  CAS  Google Scholar 

  8. Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics 2010; 6: 129–151.

    Article  CAS  Google Scholar 

  9. Sevecka M, Wolf-Yadlin A, Macbeath G . Lysate microarrays enable high-throughput, quantitative investigations of cellular signaling. Mol Cell Proteomics 2011; 10: M110 005363.

    Article  Google Scholar 

  10. Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK et al. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 2007; 6: 820–832.

    Article  CAS  Google Scholar 

  11. Jiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I et al. Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics 2006; 6: 2964–2971.

    Article  CAS  Google Scholar 

  12. Nishizuka S, Charboneau L, Young L, Major S, Reinhold WC, Waltham M et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci USA 2003; 100: 14229–14234.

    Article  CAS  Google Scholar 

  13. Lin Y, Huang R, Cao X, Wang SM, Shi Q, Huang RP . Detection of multiple cytokines by protein arrays from cell lysate and tissue lysate. Clin Chem Lab Med 2003; 41: 139–145.

    Article  CAS  Google Scholar 

  14. Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK et al. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques 2004; 36: 1030–1037.

    Article  CAS  Google Scholar 

  15. Sevecka M, Wolf-Yadlin A, MacBeath G . Lysate microarrays enable high-throughput, quantitative investigations of cellular signaling. Mol Cell Proteomics 2011; 10: M110 005363.

    Article  Google Scholar 

  16. Luckert K, Gujral TS, Chan M, Joos TO, Sorger PK, Macbeath G et al. A dual array-based approach to assess the abundance and posttranslational modification state of signaling proteins. Sci Signal 2012; 5: pl1.

    Article  Google Scholar 

  17. Gonzalez-Angulo AM, Hennessy BT, Meric-Bernstam F, Sahin A, Liu W, Ju Z et al. Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin Proteomics 2011; 8: 11.

    Article  Google Scholar 

  18. Carey MS, Agarwal R, Gilks B, Swenerton K, Kalloger S, Santos J et al. Functional proteomic analysis of advanced serous ovarian cancer using reverse phase protein array: TGF-beta pathway signaling indicates response to primary chemotherapy. Clin Cancer Res 2010; 16: 2852–2860.

    Article  CAS  Google Scholar 

  19. Nanjundan M, Byers LA, Carey MS, Siwak DR, Raso MG, Diao L et al. Proteomic profiling identifies pathways dysregulated in non-small cell lung cancer and an inverse association of AMPK and adhesion pathways with recurrence. J Thorac Oncol 2010; 5: 1894–1904.

    Article  Google Scholar 

  20. Janes KA, Reinhardt HC, Yaffe MB . Cytokine-induced signaling networks prioritize dynamic range over signal strength. Cell 2008; 135: 343–354.

    Article  CAS  Google Scholar 

  21. Goentoro L, Kirschner MW . Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 2009; 36: 872–884.

    Article  CAS  Google Scholar 

  22. Burstein HJ, Harris LN, Marcom PK, Lambert-Falls R, Havlin K, Overmoyer B et al. Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J Clin Oncol 2003; 21: 2889–2895.

    Article  CAS  Google Scholar 

  23. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  24. Isola JJ . Immunohistochemical demonstration of androgen receptor in breast cancer and its relationship to other prognostic factors. J Pathol 1993; 170: 31–35.

    Article  CAS  Google Scholar 

  25. Herrero J, Valencia A, Dopazo J . A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001; 17: 126–136.

    Article  CAS  Google Scholar 

  26. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 2010; 26: i237–i245.

    Article  CAS  Google Scholar 

  27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  28. Storey JD, Tibshirani R . Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 2003; 224: 149–157.

    CAS  PubMed  Google Scholar 

  29. Pe’er D, Hacohen N . Principles and strategies for developing network models in cancer. Cell 2011; 144: 864–873.

    Article  Google Scholar 

  30. Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, Cheang MCU et al. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res 2004; 10: 6143.

    Article  CAS  Google Scholar 

  31. Liu G, Fong E, Zeng X . GNCPro: navigate human genes and relationships through net-walking. Adv Exp Med Biol 2010. 253–259.

  32. Menashe I, Maeder D, Garcia-Closas M, Figueroa JD, Bhattacharjee S, Rotunno M et al. Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. Cancer Res 2010; 70: 4453.

    Article  CAS  Google Scholar 

  33. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K et al. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer 2005; 113: 678–682.

    Article  CAS  Google Scholar 

  34. Underiner TL, Herbertz T, Miknyoczki SJ . Discovery of small molecule c-Met inhibitors: evolution and profiles of clinical candidates. Anticancer Agents Med Chem 2010; 10: 7–27.

    Article  CAS  Google Scholar 

  35. Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 2008; 68: 1905.

    Article  CAS  Google Scholar 

  36. Gjerdrum C, Tiron C, Høiby T, Stefansson I, Haugen H, Sandal T et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA 2010; 107: 1124.

    Article  CAS  Google Scholar 

  37. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D . Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 2004; 5: R35.

    Article  Google Scholar 

  38. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D . A combined algorithm for genome-wide prediction of protein function. Nature 1999; 402: 83–86.

    Article  CAS  Google Scholar 

  39. Mackiewicz M, Huppi K, Pitt JJ, Dorsey TH, Ambs S, Caplen NJ . Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Cancer Res Treat 2011; 130: 663–679.

    Article  CAS  Google Scholar 

  40. Hafizi S, Dahlback B . Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev 2006; 17: 295–304.

    Article  CAS  Google Scholar 

  41. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 2007; 104: 20932–20937.

    Article  CAS  Google Scholar 

  42. Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY . Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 2006; 66: 10100–10111.

    Article  CAS  Google Scholar 

  43. Lim CT, Zhang Y . Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 2007; 22: 1197–1204.

    Article  CAS  Google Scholar 

  44. Demarchi F, Verardo R, Varnum B, Brancolini C, Schneider C . Gas6 anti-apoptotic signaling requires NF-kappa B activation. J Biol Chem 2001; 276: 31738–31744.

    Article  CAS  Google Scholar 

  45. Previdi S, Abbadessa G, Dalo F, France DS, Broggini M . Breast cancer-derived bone metastasis can be effectively reduced through specific c-MET inhibitor tivantinib (ARQ 197) and shRNA c-MET knockdown. Mol Cancer Ther 2012; 11: 214–223.

    Article  CAS  Google Scholar 

  46. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2011; 30: 1436–1448.

    Article  CAS  Google Scholar 

  47. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res 2010; 70: 1544–1554.

    Article  CAS  Google Scholar 

  48. Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 2008; 68: 1905–1915.

    Article  CAS  Google Scholar 

  49. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ . Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65: 11118–11128.

    Article  CAS  Google Scholar 

  50. Kataoka Y, Mukohara T, Tomioka H, Funakoshi Y, Kiyota N, Fujiwara Y et al. Foretinib (GSK1363089), a multi-kinase inhibitor of MET and VEGFRs, inhibits growth of gastric cancer cell lines by blocking inter-receptor tyrosine kinase networks. Invest New Drugs 2012; 30: 1352–1360.

    Article  CAS  Google Scholar 

  51. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 2007; 26: 3909–3919.

    Article  CAS  Google Scholar 

  52. Birchmeier C, Birchmeier W, Gherardi E, Woude GFV . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  Google Scholar 

  53. Mood K, Saucier C, Bong YS, Lee HS, Park M, Daar IO . Gab1 is required for cell cycle transition, cell proliferation, and transformation induced by an oncogenic met receptor. Mol Biol Cell 2006; 17: 3717.

    Article  CAS  Google Scholar 

  54. Sam MR, Elliott BE, Mueller CR . A novel activating role of SRC and STAT3 on HGF transcription in human breast cancer cells. Mol Cancer 2007; 6: 69.

    Article  Google Scholar 

  55. Wojcik E, Sharifpoor S, Miller N, Wright T, Watering R, Tremblay E et al. A novel activating function of c-Src and Stat3 on HGF transcription in mammary carcinoma cells. Oncogene 2006; 25: 2773–2784.

    Article  CAS  Google Scholar 

  56. Yeh CY, Shin SM, Yeh HH, Wu TJ, Shin JW, Chang TY et al. Transcriptional activation of the Axl and PDGFR-alpha by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer 2011; 11: 139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (R33 CA128726, R21 CA126720, and 5RC1-HG005354) and from the Stand Up to Cancer Project (AACR-SU2C-DT0409). TSG is a Human Frontier Science Program Fellow. RLK is partially supported by NSF 0856285. Supplementary Information accompanies the paper on the Oncogene website.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G MacBeath or P Sorger.

Ethics declarations

Competing interests

GM is a Vice President and co-founder, and PKS a co-founder of Merrimack Pharmaceuticals, a biotechnology company that develops anti-cancer drugs. PES is a President and CEO of Protein Biotechnologies, Inc. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gujral, T., Karp, R., Finski, A. et al. Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays. Oncogene 32, 3470–3476 (2013). https://doi.org/10.1038/onc.2012.378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.378

Keywords

This article is cited by

Search

Quick links