Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets

Abstract

A lack of expression of miR-143 and miR-145 has been demonstrated to be a frequent feature of colorectal tumors. Activating KRAS mutations have been reported in 30–60% of colorectal cancers and an inverse correlation between Kras and miR-143/145 expression has been observed. Previously, we have demonstrated that oncogenic Kras leads to repression of the miR-143/145 cluster in pancreatic cancer and is dependent on the Ras responsive element (RRE) binding protein (RREB1), which negatively regulates miR-143/145 expression. In the present study, we have found that RREB1 is overexpressed in colorectal adenocarcinoma tumors and cell lines, and the expression of the miR-143/145 primary transcript is inversely related to RREB1 expression. In colorectal cancer cell lines, the miR-143/145 cluster is repressed by RREB1 downstream of constitutively active KRAS. RREB1 is activated by the MAPK pathway and negatively represses the miR-143/145 promoter through interaction with two RREs. In addition, overexpression of miR-143 or miR-145 in HCT116 cells abrogates signaling through the MAPK, PI3K and JNK pathways by downregulation of both KRAS and RREB1 in addition to downregulation of a cohort of genes in the MAPK signaling cascade. These results establish a complex network of regulation through which the miR-143/145 cluster is able to modulate KRAS signaling in colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  3. Mendell JT . miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133: 217–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbacid M . Ras genes. Annu Rev Biochem 1987; 56: 779–827.

    Article  CAS  PubMed  Google Scholar 

  7. Hingorani SR, Tuveson DA . Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev 2003; 13: 6–13.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  9. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010; 18: 282–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 2010; 24: 2754–2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Date S, Nibu Y, Yanai K, Hirata J, Yagami K, Fukamizu A . Finb, a multiple zinc finger protein, represses transcription of the human angiotensinogen gene. Int J Mol Med 2004; 13: 637–642.

    CAS  PubMed  Google Scholar 

  12. Mukhopadhyay NK, Cinar B, Mukhopadhyay L, Lutchman M, Ferdinand AS, Kim J et al. The zinc finger protein ras-responsive element binding protein-1 is a coregulator of the androgen receptor: implications for the role of the Ras pathway in enhancing androgenic signaling in prostate cancer. Mol Endocrinol 2007; 21: 2056–2070.

    Article  CAS  PubMed  Google Scholar 

  13. Thiagalingam A, De Bustros A, Borges M, Jasti R, Compton D, Diamond L et al. RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas. Mol Cell Biol 1996; 16: 5335–5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thiagalingam A, Lengauer C, Baylin SB, Nelkin BD . RREB1, a ras responsive element binding protein, maps to human chromosome 6p25. Genomics 1997; 45: 630–632.

    Article  CAS  PubMed  Google Scholar 

  15. Uren AG, Kool J, Matentzoglu K, de Ridder J, Mattison J, van Uitert M et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 2008; 133: 727–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang S, Qian X, Redman C, Bliskovski V, Ramsay ES, Lowy DR et al. p16 INK4a gene promoter variation and differential binding of a repressor, the ras-responsive zinc-finger transcription factor, RREB. Oncogene 2003; 22: 2285–2295.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Zhao J, Edenberg HJ . A human Raf-responsive zinc-finger protein that binds to divergent sequences. Nucleic Acids Res 1999; 27: 2947–2956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  19. Michael MZ, O'Connor SM, van Holst PNG, Young GP, James RJ . Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882–891.

    CAS  PubMed  Google Scholar 

  20. Akao Y, Nakagawa Y, Naoe T . MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 2006; 16: 845–850.

    CAS  PubMed  Google Scholar 

  21. Kressner U, Glimelius B, Bergström R, Påhlman L, Larsson A, Lindmark G . Increased serum p53 antibody levels indicate poor prognosis in patients with colorectal cancer. Br J Cancer 1998; 11: 1848–1851.

    Article  Google Scholar 

  22. Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM et al. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 2003; 24: 703–710.

    Article  CAS  PubMed  Google Scholar 

  23. Calcagno SR, Li S, Colon M, Kreinest PA, Thompson EA, Fields AP et al. Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon. Int J Cancer 2008; 122: 2462–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007; 72: 397–402.

    Article  CAS  PubMed  Google Scholar 

  25. Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 2012; 51: 1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol 2007; 8: R131.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaspar C, Cardoso J, Franken P, Molenaar L, Morreau H, Möslein G et al. Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis. Am J Pathol 2008; 172: 1363–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H et al. Transcriptome profile of human colorectal adenomas. Mol Cancer Res 2007; 5: 1263–1275.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 2011; 9: 960–975.

    Article  CAS  PubMed  Google Scholar 

  31. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nitz MD, Harding MA, Smith SC, Thomas S, Theodorescu D . RREB1 transcription factor splice variants in urologic cancer. Am J Pathol 2011; 179: 477–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 1993; 260: 85–88.

    Article  CAS  PubMed  Google Scholar 

  34. Keller JW, Haigis KM, Franklin JL, Whitehead RH, Jacks T, Coffey RJ . Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS: gelsolin complex. Oncogene 2007; 26: 3051–3059.

    Article  CAS  PubMed  Google Scholar 

  35. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG . DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009; 25: 1991–1993.

    Article  CAS  PubMed  Google Scholar 

  36. Starr TK, Allaei R, Silverstein KA, Staggs RA, Sarver AL, Bergemann TL et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 2009; 323: 1747–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525–532.

    Article  CAS  PubMed  Google Scholar 

  38. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 5: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barker N, Ridgway RA, van Es JH, van de Wetering H, Begthel H, van den Born M et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457: 608–611.

    Article  CAS  PubMed  Google Scholar 

  40. Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 2009; 101: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borralho PM, Simões AE, Gomes SE, Lima RT, Carvalho T, Ferreira DM et al. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One 2011; 6: e23787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bissonnette M, Khare S, von Lintig FC, Wali RK, Nguyen L, Zhang Y et al. Mutational and nonmutational activation of p21ras in rat colonic azoxymethane-induced tumors: effects on mitogen-activated protein kinase, cyclooxygenase-2, and cyclin D1. Cancer Res 2000; 60: 4602–4609.

    CAS  PubMed  Google Scholar 

  44. Buzzi N, Colicheo A, Boland R, de Boland AR . MAP kinases in proliferating human colon cancer Caco-2 cells. Mol Cell Biochem 2009; 328: 201–208.

    Article  CAS  PubMed  Google Scholar 

  45. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.

    Article  CAS  PubMed  Google Scholar 

  46. Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 2009; 4: e7542.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM . MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009; 276: 6689–6700.

    Article  CAS  PubMed  Google Scholar 

  48. Han SX, Zhu Q, Ma JL, Zhao J, Huang C, Jia X et al. Lowered HGK expression inhibits cell invasion and adhesion in hepatocellular carcinoma cell line HepG2. World J Gastroenterol 2010; 16: 4541–4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu AW, Cai J, Zhao XL, Jiang TH, He TF, Fu HQ et al. ShRNA-targeted MAP4K4 inhibits hepatocellular carcinoma growth. Clin Cancer Res 2011; 17: 710–720.

    Article  CAS  PubMed  Google Scholar 

  50. Hao JM, Chen JZ, Sui HM, Si-Ma XQ, Li GQ, Liu C et al. A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol 2010; 220: 475–489.

    CAS  PubMed  Google Scholar 

  51. Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76: 1025–1037.

    Article  PubMed  Google Scholar 

  52. Cellurale C, Sabio G, Kennedy NJ, Das M, Barlow M, Sandy P et al. Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 2011; 31: 1565–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sancho R, Nateri AS, de Vinuesa AG, Aguilera C, Nye E, Spencer-Dene B et al. JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J 2009; 28: 1843–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adler V, Qu Y, Smith SJ, Izotova L, Pestka S, Kung HF et al. Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway. Biochemistry 2005; 44: 10784–10795.

    Article  CAS  PubMed  Google Scholar 

  55. Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008; 57: 1420–1430.

    Article  CAS  PubMed  Google Scholar 

  56. Campbell PM, Groehler AL, Lee KM, Ouellette MM, Khazak V, Der CJ . K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res 2007; 67: 2098–2106.

    Article  CAS  PubMed  Google Scholar 

  57. Kent OA, Mullendore M, Wentzel EA, Lopez-Romero P, Tan AC, Alvarez H et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther 2009; 8: 2013–2024.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Joshua Mendell and Dr Anirban Maitra for helpful discussions and feedback during preparation of the manuscript. We thank Dr James Eshleman for kindly providing cell lines and Norman Barker for photography assistance. We would like to thank Dr Dan Durocher and members of the Durocher laboratory at the Samuel Lunenfeld Research Institute at Mount Sinai Hospital Toronto for kindly providing laboratory space and reagents and helpful discussions during the review process of the manuscript. This work was supported in part through the NIH (R01CA120185) and by a Clinician Scientist Award to MKH from the Doris Duke Foundation Grant #: 2009040. OAK is a Life Sciences Research Foundation Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O A Kent.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, O., Fox-Talbot, K. & Halushka, M. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 32, 2576–2585 (2013). https://doi.org/10.1038/onc.2012.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.266

Keywords

This article is cited by

Search

Quick links