Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer

Abstract

Emerging evidence demonstrates that RUNX3 is a tumor suppressor in breast cancer. Inactivation of RUNX3 in mice results in spontaneous mammary gland tumors, and decreased or silenced expression of RUNX3 is frequently found in breast cancer cell lines and human breast cancer samples. However, the underlying mechanism for initiating RUNX3 inactivation in breast cancer remains elusive. Here, we identify prolyl isomerase Pin1, which is often overexpressed in breast cancer, as a key regulator of RUNX3 inactivation. In human breast cancer cell lines and breast cancer samples, expression of Pin1 inversely correlates with the expression of RUNX3. In addition, Pin1 recognizes four phosphorylated Ser/Thr-Pro motifs in RUNX3 via its WW domain. Binding of Pin1 to RUNX3 suppresses the transcriptional activity of RUNX3. Furthermore, Pin1 reduces the cellular levels of RUNX3 in an isomerase activity-dependent manner by inducing the ubiquitination and proteasomal degradation of RUNX3. Knocking down Pin1 enhances the cellular levels and transcriptional activity of RUNX3 by inhibiting the ubiquitination and degradation of RUNX3. Our results identify Pin1 as a new regulator of RUNX3 inactivation in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Katzenellenbogen BS, Katzenellenbogen JA . Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2000; 2: 335–344.

    Article  CAS  PubMed  Google Scholar 

  2. Cheskis BJ, Greger JG, Nagpal S, Freedman LP . Signaling by estrogens. J Cell Physiol 2007; 213: 610–617.

    Article  CAS  PubMed  Google Scholar 

  3. Lee EY, Muller WJ . Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2010; 2: a003236.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang B, Qu Z, Ong CW, Tsang YH, Xiao G, Shapiro D et al. RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene 2011; 31: 527–534.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ito Y . Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 2004; 23: 4198–4208.

    Article  CAS  PubMed  Google Scholar 

  6. Subramaniam MM, Chan JY, Soong R, Ito K, Ito Y, Yeoh KG et al. RUNX3 inactivation by frequent promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression. Breast Cancer Res Treat 2009; 113: 113–121.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Y, Tong D, Lou G, Zhang Y, Geng J . Expression of RUNX3 gene, methylation status and clinicopathological significance in breast cancer and breast cancer cell lines. Pathobiology 2008; 75: 244–251.

    Article  CAS  PubMed  Google Scholar 

  8. Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M et al. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 2006; 66: 6512–6520.

    Article  CAS  PubMed  Google Scholar 

  9. Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K, Salto-Tellez M . Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta 2009; 1796: 315–331.

    CAS  PubMed  Google Scholar 

  10. Chen LF . Tumor suppressor function of RUNX3 in breast cancer. J Cell Biochem 2012; 113: 1470–1477.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chuang LS, Ito Y . RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 2010; 29: 2605–2615.

    Article  CAS  PubMed  Google Scholar 

  12. Hwang KT, Han W, Bae JY, Hwang SE, Shin HJ, Lee JE et al. Downregulation of the RUNX3 gene by promoter hypermethylation and hemizygous deletion in breast cancer. J Korean Med Sci 2007; 22 (Suppl): S24–S31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bae SC, Lee YH . Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 2006; 366: 58–66.

    Article  CAS  PubMed  Google Scholar 

  14. Bae JS, Jang MK, Hong S, An WG, Choi YH, Kim HD et al. Phosphorylation of NF-kappa B by calmodulin-dependent kinase IV activates anti-apoptotic gene expression. Biochem Biophys Res Commun 2003; 305: 1094–1098.

    Article  CAS  PubMed  Google Scholar 

  15. Lu KP, Zhou XZ . The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 2007; 8: 904–916.

    Article  CAS  PubMed  Google Scholar 

  16. Liou YC, Zhou XZ, Lu KP . Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011; 36: 501–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wulf G, Ryo A, Liou YC, Lu KP . The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res 2003; 5: 76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001; 20: 3459–3472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 2002; 99: 1335–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajbhandari P, Finn G, Solodin NM, Singarapu KK, Sahu SC, Markley JL et al. Regulation of ERalpha N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol Cell Biol 2011; 32: 445–457.

    Article  PubMed  Google Scholar 

  21. Yi P, Wu RC, Sandquist J, Wong J, Tsai SY, Tsai MJ et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol Cell Biol 2005; 25: 9687–9699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A et al. The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 2009; 11: 133–142.

    Article  CAS  PubMed  Google Scholar 

  23. Reineke EL, Lam M, Liu Q, Liu Y, Stanya KJ, Chang KS et al. Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 2008; 28: 997–1006.

    Article  CAS  PubMed  Google Scholar 

  24. Lim JH, Liu Y, Reineke E, Kao HY . The MAPK ERK2 phosphorylates and promotes Pin1-dependent promyelocytic leukemia protein (PML) turnover. J Biol Chem 2011; 286: 44403–44411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis FM, Tsao TY, Fowler SK, Rao PN . Monoclonal antibodies to mitotic cells. Proc Natl Acad Sci USA 1983; 80: 2926–2930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 1997; 278: 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  27. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP . Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002; 277: 2381–2384.

    Article  CAS  PubMed  Google Scholar 

  28. Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem 1999; 274: 31577–31582.

    Article  CAS  PubMed  Google Scholar 

  29. Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 1998; 37: 5566–5575.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang M, Xie R, Hou W, Wang B, Shen R, Wang X et al. PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J Cell Sci 2009; 122: 1382–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Butt AJ, Caldon CE, McNeil CM, Swarbrick A, Musgrove EA, Sutherland RL . Cell cycle machinery: links with genesis and treatment of breast cancer. Adv Exp Med Biol 2008; 630: 189–205.

    Article  CAS  PubMed  Google Scholar 

  32. Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ et al. Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 2004; 279: 29409–29417.

    Article  CAS  PubMed  Google Scholar 

  33. Nakano A, Koinuma D, Miyazawa K, Uchida T, Saitoh M, Kawabata M et al. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins. J Biol Chem 2009; 284: 6109–6115.

    Article  CAS  PubMed  Google Scholar 

  34. Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y . Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 2001; 20: 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 2000; 6: 873–883.

    Article  CAS  PubMed  Google Scholar 

  36. Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG . Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 2004; 164: 1727–1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wulf G, Finn G, Suizu F, Lu KP . Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 2005; 7: 435–441.

    Article  CAS  PubMed  Google Scholar 

  38. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 2010; 29: 5643–5650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang DH, Salto-Tellez M, Chiu LL, Shen L, Koay ES . Tissue microarray study for classification of breast tumors. Life Sci 2003; 73: 3189–3199.

    Article  CAS  PubMed  Google Scholar 

  40. Chen LF, Mu Y, Greene WC . Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J 2002; 21: 6539–6548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Lu KP and Kao HY for the gift of reagents and members in the Chen lab for discussion. This work is supported in part by fund provided by UIUC (to LFC) and NIH grants DK-085158 (to LFC). YHT is an A*STAR-Illinois Partnership fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-F Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicole Tsang, YH., Wu, XW., Lim, JS. et al. Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer. Oncogene 32, 1488–1496 (2013). https://doi.org/10.1038/onc.2012.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.178

Keywords

This article is cited by

Search

Quick links