Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity

Abstract

We synthesized several novel bifunctional alkylating derivatives of 3a-aza-cyclopenta[a]indene (BO-1012, BO-1005, BO-1099 and BO-1101) that are potent DNA interstrand crosslinking agents. In in vitro cytotoxicity assay, these compounds were more cytotoxic to multidrug-resistant (MDR) cells, such as KBvin10, KBtax50 and CEM/VBL, than their parental cells. Using a xenograft model, BO-1012, at a dose of 5 mg/kg, partially suppressed the growth of parental KB cells but completely suppressed the growth of KBvin10 cells in nude mice. In exploring the possible mechanism, we found that DNA double-strand break (DSB) repair activity in MDR cells, KBvin10 and CEM/VBL, was significantly reduced compared with their parental cells, KB and CEM. Reduced DSB repair activity in KBvin10 cells was likely due to a defect in nuclear translocation of DNA-dependent protein kinase (DNA-PK), a component of the non-homologous end-joining repair machinery. Furthermore, BO-1012-induced DNA-PK translocation from the cytosol into the nucleus in KB cells is associated with the activation of the Src/nuclear epidermal growth factor receptor (EGFR) cascade, which is defective in MDR cells. As knockdown of P-glycoprotein (P-gp) by siRNA reactivated the Src/nuclear EGFR cascade, DNA-PK translocation and DNA repair activity in MDR cells, overexpression of P-gp attenuates the activity of DNA DSB repair through suppression of Src/nuclear EGFR cascade. Therefore, DNA interstrand crosslinking agents may have potential therapeutic use against P-gp-overexpressing MDR cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chan HS, Haddad G, Thorner PS, DeBoer G, Lin YP, Ondrusek N et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 1991; 325: 1608–1614.

    Article  CAS  Google Scholar 

  2. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM . Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5: 219–234.

    Article  CAS  Google Scholar 

  3. Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 1989; 81: 116–124.

    Article  CAS  Google Scholar 

  4. Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 1986; 83: 4538–4542.

    Article  CAS  Google Scholar 

  5. Ford JM, Hait WN . Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 1990; 42: 155–199.

    CAS  PubMed  Google Scholar 

  6. Norgaard JM, Bukh A, Langkjer ST, Clausen N, Palshof T, Hokland P . MDR1 gene expression and drug resistance of AML cells. Br J Haematol 1998; 100: 534–540.

    Article  CAS  Google Scholar 

  7. Lage H . MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets 2006; 7: 813–821.

    Article  CAS  Google Scholar 

  8. Takara K, Sakaeda T, Okumura K . An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 2006; 12: 273–286.

    Article  CAS  Google Scholar 

  9. Lee CH . Reversing agents for ATP-binding cassette drug transporters. Methods Mol Biol 2010; 596: 325–340.

    Article  CAS  Google Scholar 

  10. Pan GD, Yang JQ, Yan LN, Chu GP, Liu Q, Xiao Y et al. Reversal of multi-drug resistance by pSUPER-shRNA-mdr1 in vivo and in vitro. World J Gastroenterol 2009; 15: 431–440.

    Article  CAS  Google Scholar 

  11. Turk D, Hall MD, Chu BF, Ludwig JA, Fales HM, Gottesman MM et al. Identification of compounds selectively killing multidrug-resistant cancer cells. Cancer Res 2009; 69: 8293–8301.

    Article  Google Scholar 

  12. Miyagawa K . Clinical relevance of the homologous recombination machinery in cancer therapy. Cancer Sci 2008; 99: 187–194.

    Article  CAS  Google Scholar 

  13. Frosina G. DNA . repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009; 7: 989–999.

    Article  CAS  Google Scholar 

  14. Meek K, Gupta S, Ramsden DA, Lees-Miller SP . The DNA-dependent protein kinase: the director at the end. Immunol Rev 2004; 200: 132–141.

    Article  CAS  Google Scholar 

  15. Bolderson E, Richard DJ, Zhou BB, Khanna KK . Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 2009; 15: 6314–2630.

    Article  CAS  Google Scholar 

  16. Lees-Miller SP, Godbout R, Chan DW, Weinfeld M, Day RS, Barron GM et al. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 1995; 267: 1183–1185.

    Article  CAS  Google Scholar 

  17. Mahaney BL, Meek K, Lees-Miller SP . Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009; 417: 639–650.

    Article  CAS  Google Scholar 

  18. Friedmann BJ, Caplin M, Savic B, Shah T, Lord CJ, Ashworth A et al. Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol Cancer Ther 2006; 5: 209–218.

    Article  CAS  Google Scholar 

  19. Dittmann K, Mayer C, Kehlbach R, Rodemann HP . Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 2008; 7: 69.

    Article  Google Scholar 

  20. Yeatman TJ . A renaissance for SRC. Nat Rev Cancer 2004; 4: 470–480.

    Article  CAS  Google Scholar 

  21. Martin GS . The hunting of the Src. Nat Rev Mol Cell Biol 2001; 2: 467–475.

    Article  CAS  Google Scholar 

  22. Guarino M . Src signaling in cancer invasion. J Cell Physiol 2010; 223: 14–26.

    CAS  Google Scholar 

  23. Irby RB, Yeatman TJ . Role of Src expression and activation in human cancer. Oncogene 2000; 19: 5636–5642.

    Article  CAS  Google Scholar 

  24. Bradshaw JM . The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22: 1175–1184.

    Article  CAS  Google Scholar 

  25. Aleshin A, Finn RS . SRC: a century of science brought to the clinic. Neoplasia 2010; 12: 599–607.

    Article  CAS  Google Scholar 

  26. Mayer EL, Krop IE . Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin Cancer Res 2010; 16: 3526–3532.

    Article  CAS  Google Scholar 

  27. Wang SC, Hung MC . Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res 2009; 15: 6484–6489.

    Article  CAS  Google Scholar 

  28. Kakadiya R, Dong H, Lee PC, Kapuriya N, Zhang X, Chou TC et al. Potent antitumor bifunctional DNA alkylating agents, synthesis and biological activities of 3a-aza-cyclopenta[a]indenes. Bioorg Med Chem 2009; 17: 5614–5626.

    Article  CAS  Google Scholar 

  29. Lee PC, Kakadiya R, Su TL, Lee TC . Combination of bifunctional alkylating agent and arsenic trioxide synergistically suppresses the growth of drug-resistant tumor cells. Neoplasia 2010; 12: 376–387.

    Article  CAS  Google Scholar 

  30. Chaniyara R, Kapuriya N, Dong H, Lee PC, Suman S, Marvania B et al. Novel bifunctional alkylating agents, 5,10-dihydropyrrolo[1,2-b]isoquinoline derivatives, synthesis and biological activity. Bioorg Med Chem 2011; 19: 275–286.

    Article  CAS  Google Scholar 

  31. Juang SH, Lung CC, Hsu PC, Hsu KS, Li YC, Hong PC et al. D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Mol Cancer Ther 2007; 6: 193–202.

    Article  CAS  Google Scholar 

  32. Wang HF, Lee TC . Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Commun 1993; 192: 1093–1099.

    Article  CAS  Google Scholar 

  33. Roninson IB . The role of the MDR1 (P-glycoprotein) gene in multidrug resistance in vitro and in vivo. Biochem Pharmacol 1992; 43: 95–102.

    Article  CAS  Google Scholar 

  34. O’Connell MJ, Walworth NC, Carr AM . The G2-phase DNA-damage checkpoint. Trends Cell Biol 2000; 10: 296–303.

    Article  Google Scholar 

  35. Erba E, Mascellani E, Pifferi A, D’Incalci M . Comparison of cell-cycle phase perturbations induced by the DNA-minor-groove alkylator tallimustine and by melphalan in the SW626 cell line. Int J Cancer 1995; 62: 170–175.

    Article  CAS  Google Scholar 

  36. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Kehlbach R, Rodemann HP . Nuclear epidermal growth factor receptor modulates cellular radio-sensitivity by regulation of chromatin access. Radiother Oncol 2011; 99: 317–322.

    Article  CAS  Google Scholar 

  37. Gottesman MM, Fojo T, Bates SE . Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58.

    Article  CAS  Google Scholar 

  38. Kimura Y, Ishida S, Matoba H, RppA Okahisa N . a transducer homologue, and MmrA, a multidrug transporter homologue, are involved in the biogenesis and/or assembly of polysaccharide in Myxococcus xanthus. Microbiology 2004; 150: 631–639.

    Article  CAS  Google Scholar 

  39. Hatanpaa KJ, Burma S, Zhao D, Habib AA . Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 2010; 12: 675–684.

    Article  CAS  Google Scholar 

  40. He S, Liu F, Xie Z, Zu X, Xu W, Jiang Y . P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells. Int J Mol Sci 2010; 11: 3039–3051.

    Article  CAS  Google Scholar 

  41. Parsons SJ, Parsons JT . Src family kinases, key regulators of signal transduction. Oncogene 2004; 23: 7906–7909.

    Article  CAS  Google Scholar 

  42. Bjorge JD, Jakymiw A, Fujita DJ . Selected glimpses into the activation and function of Src kinase. Oncogene 2000; 19: 5620–5635.

    Article  CAS  Google Scholar 

  43. Wheeler DL, Iida M, Dunn EF . The role of Src in solid tumors. Oncologist 2009; 14: 667–678.

    Article  CAS  Google Scholar 

  44. Lurje G, Lenz HJ . EGFR signaling and drug discovery. Oncology 2009; 77: 400–410.

    Article  CAS  Google Scholar 

  45. Bandyopadhyay D, Mandal M, Adam L, Mendelsohn J, Kumar R . Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 1998; 273: 1568–1573.

    Article  CAS  Google Scholar 

  46. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 2005; 280: 31182–31189.

    Article  CAS  Google Scholar 

  47. Szumiel I . Epidermal growth factor receptor and DNA double strand break repair: the cell’s self-defence. Cell Signal 2006; 18: 1537–1548.

    Article  CAS  Google Scholar 

  48. Liccardi G, Hartley JA, Hochhauser D . EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res 2011; 71: 1103–1114.

    Article  CAS  Google Scholar 

  49. Huo L, Wang YN, Xia W, Hsu SC, Lai CC, Li LY et al. RNA helicase A is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. Proc Natl Acad Sci USA 2010; 107: 16125–16130.

    Article  CAS  Google Scholar 

  50. Egloff AM, Grandis JR . Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer. Semin Oncol 2008; 35: 286–297.

    Article  CAS  Google Scholar 

  51. Kim LC, Song L, Haura EB . Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 2009; 6: 587–595.

    Article  Google Scholar 

  52. Borowski E, Bontemps-Gracz MM, Piwkowska A . Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol 2005; 52: 609–627.

    CAS  PubMed  Google Scholar 

  53. Hall MD, Brimacombe KR, Varonka MS, Pluchino KM, Monda JK, Li J et al. Synthesis and structure-activity evaluation of Isatin-beta-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-Glycoprotein. J Med Chem 2011; 54: 5878–5889.

    Article  CAS  Google Scholar 

  54. Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJ, van der Wilt CL et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer 2003; 88: 1963–1970.

    Article  CAS  Google Scholar 

  55. Gupta RS . Cross-resistance of vinblastine- and taxol-resistant mutants of Chinese hamster ovary cells to other anticancer drugs. Cancer Treat Rep 1985; 69: 515–521.

    CAS  PubMed  Google Scholar 

  56. Bell SE, Quinn DM, Kellett GL, Warr JR . 2-Deoxy-D-glucose preferentially kills multidrug-resistant human KB carcinoma cell lines by apoptosis. Br J Cancer 1998; 78: 1464–1470.

    Article  CAS  Google Scholar 

  57. Hall MD, Handley MD, Gottesman MM . Is resistance useless? Multidrug resistance and collateral sensitivity. Trends Pharmacol Sci 2009; 30: 546–556.

    Article  CAS  Google Scholar 

  58. Chou TC . Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681.

    Article  CAS  Google Scholar 

  59. Lee TC, Ho IC . Expression of heme oxygenase in arsenic-resistant human lung adenocarcinoma cells. Cancer Res 1994; 54: 1660–1664.

    CAS  PubMed  Google Scholar 

  60. Lai KC, Chang KW, Liu CJ, Kao SY, Lee TC . IFN-induced protein with tetratricopeptide repeats 2 inhibits migration activity and increases survival of oral squamous cell carcinoma. Mol Cancer Res 2008; 6: 1431–1439.

    Article  CAS  Google Scholar 

  61. Yih LH, Tseng YY, Wu YC, Lee TC . Induction of centrosome amplification during arsenite-induced mitotic arrest in CGL-2 cells. Cancer Res 2006; 66: 2098–2106.

    Article  CAS  Google Scholar 

  62. Medunjanin S, Weinert S, Schmeisser A, Mayer D, Braun-Dullaeus RC . Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-alpha. Mol Biol Cell 2010; 21: 1620–1628.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Ling-Hui Yih for helpful suggestions and critical comments. This work was supported by grants from the Academia Sinica (AS-96-TP-B06 and AS-100-TP-B13) and the National Science Councils (NSC-100-2325-B-001-003), Taiwan (ROC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T-L Su or T-C Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, PC., Lee, HJ., Kakadiya, R. et al. Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity. Oncogene 32, 1144–1154 (2013). https://doi.org/10.1038/onc.2012.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.133

Keywords

This article is cited by

Search

Quick links