Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation

Abstract

Inhibition of homologous recombination (HR) is believed to be a transactivation-independent function of p53 that protects from genetic instability. Misrepair by HR can lead to genetic alterations such as translocations, duplications, insertions and loss of heterozygosity, which all bear the risk of driving oncogenic transformation. Regulation of HR by wild-type p53 (wtp53) should prevent these genomic rearrangements. Mutation of p53 is a frequent event during carcinogenesis. In particular, dominant-negative mutants inhibiting wtp53 expressed from the unperturbed allel can drive oncogenic transformation by disrupting the p53-dependent anticancer barrier. Here, we asked whether the hot spot mutants R175H and R273H relax HR control in p53-proficient cells. Utilizing an I-SceI-based reporter assay, we observed a moderate (1.5 × ) stimulation of HR upon expression of the mutant proteins in p53-proficient CV-1, but not in p53-deficient H1299 cells. Importantly, the stimulatory effect was exactly paralleled by an increase in the number of HR competent S- and G2-phase cells, which can well explain the enhanced recombination frequencies. Furthermore, the impact on HR exerted by the transactivation domain double-mutant L22Q/W23S and mutant R273P, both of which were reported to regulate HR independently of G1-arrest execution, is also exactly mirrored by cell-cycle behavior. These results are in contrast to previous concepts stating that the transactivation-independent impact of p53 on HR is a general phenomenon valid for replication-associated and also for directly induced double-strand break. Our data strongly suggest that the latter is largely mediated by cell-cycle regulation, a classical transactivation-dependent function of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. van Gent DC, Hoeijmakers JH, Kanaar R . Chromosomal stability and the DNA double-stranded break connection. Nat Rev 2001; 2: 196–206.

    Article  CAS  Google Scholar 

  2. Albertson DG, Collins C, McCormick F, Gray JW . Chromosome aberrations in solid tumors. Nat Genet 2003; 34: 369–376.

    Article  CAS  PubMed  Google Scholar 

  3. Bertrand P, Saintigny Y, Lopez BS . p53's double life: transactivation-independent repression of homologous recombination. Trends Genet 2004; 20: 235–243.

    Article  CAS  PubMed  Google Scholar 

  4. Gatz SA, Wiesmuller L . p53 in recombination and repair. Cell Death Differ 2006; 13: 1003–1016.

    Article  CAS  PubMed  Google Scholar 

  5. Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T, Lopez BS . Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 1997; 14: 1117–1122.

    Article  CAS  PubMed  Google Scholar 

  6. Mekeel KL, Tang W, Kachnic LA, Luo CM, DeFrank JS, Powell SN . Inactivation of p53 results in high rates of homologous recombination. Oncogene 1997; 14: 1847–1857.

    Article  CAS  PubMed  Google Scholar 

  7. Wiesmuller L, Cammenga J, Deppert WW . In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J Virol 1996; 70: 737–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boehden GS, Akyuz N, Roemer K, Wiesmuller L . p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 2003; 22: 4111–4117.

    Article  CAS  PubMed  Google Scholar 

  9. Romanova LY, Willers H, Blagosklonny MV, Powell SN . The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene 2004; 23: 9025–9033.

    Article  CAS  PubMed  Google Scholar 

  10. Sturzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S . p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 1996; 15: 1992–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Linke SP, Sengupta S, Khabie N, Jeffries BA, Buchhop S, Miska S et al. p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 2003; 63: 2596–2605.

    CAS  PubMed  Google Scholar 

  12. Yoon D, Wang Y, Stapleford K, Wiesmuller L, Chen J . P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 2004; 336: 639–654.

    Article  CAS  PubMed  Google Scholar 

  13. Lee S, Cavallo L, Griffith J . Human p53 binds holliday junctions strongly and facilitates their cleavage. J Biol Chem 1997; 272: 7532–7539.

    Article  CAS  PubMed  Google Scholar 

  14. Dudenhoffer C, Rohaly G, Will K, Deppert W, Wiesmuller L . Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 1998; 18: 5332–5342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Susse S, Janz C, Janus F, Deppert W, Wiesmuller L . Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 2000; 19: 4500–4512.

    Article  CAS  PubMed  Google Scholar 

  16. Bunz F, Fauth C, Speicher MR, Dutriaux A, Sedivy JM, Kinzler KW et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res 2002; 62: 1129–1133.

    CAS  PubMed  Google Scholar 

  17. Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 2003; 22: 1210–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B . Oncogenic forms of p53 inhibit p53-regulated gene expression. Science (New York, NY) 1992; 256: 827–830.

    Article  CAS  Google Scholar 

  19. Joerger AC, Fersht AR . Structural biology of the tumor suppressor p53. Ann Rev Biochem 2008; 77: 557–582.

    Article  CAS  PubMed  Google Scholar 

  20. Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 2002; 22: 6306–6317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dudenhoffer C, Kurth M, Janus F, Deppert W, Wiesmuller L . Dissociation of the recombination control and the sequence-specific transactivation function of P53. Oncogene 1999; 18: 5773–5784.

    Article  CAS  PubMed  Google Scholar 

  22. Saintigny Y, Lopez BS . Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene 2002; 21: 488–492.

    Article  CAS  PubMed  Google Scholar 

  23. Saintigny Y, Rouillard D, Chaput B, Soussi T, Lopez BS . Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 1999; 18: 3553–3563.

    Article  CAS  PubMed  Google Scholar 

  24. Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F et al. Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 2008; 36: 4088–4098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T et al. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 2007; 9: 675–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J et al. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair 2010; 9: 889–897.

    Article  CAS  PubMed  Google Scholar 

  27. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J et al. Human CtIP promotes DNA end resection. Nature 2007; 450: 509–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huertas P, Jackson SP . Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 2009; 284: 9558–9565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Restle A, Farber M, Baumann C, Bohringer M, Scheidtmann KH, Muller-Tidow C et al. Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res 2008; 36: 5362–5375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Willers H, McCarthy EE, Wu B, Wunsch H, Tang W, Taghian DG et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 2000; 19: 632–639.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson TM, Hammond EM, Giaccia A, Attardi LD . The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 2005; 37: 145–152.

    Article  CAS  PubMed  Google Scholar 

  32. You Z, Shi LZ, Zhu Q, Wu P, Zhang YW, Basilio A et al. CtIP links DNA double-strand break sensing to resection. Mol Cell 2009; 36: 954–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eid W, Steger M, El-Shemerly M, Ferretti LP, Pena-Diaz J, Konig C et al. DNA end resection by CtIP and exonuclease 1 prevents genomic instability. EMBO Rep 2010; 11: 962–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaidi A, Weinert BT, Choudhary C, Jackson SP . Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science (New York, NY) 2010; 329: 1348–1353.

    Article  CAS  Google Scholar 

  35. Roemer K, Mueller-Lantzsch N . p53 transactivation domain mutant Q22, S23 is impaired for repression of promoters and mediation of apoptosis. Oncogene 1996; 12: 2069–2079.

    CAS  PubMed  Google Scholar 

  36. Zhang Y, Xiong Y . A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science (New York, NY) 2001; 292: 1910–1915.

    Article  CAS  Google Scholar 

  37. Tang M, Wahl GM, Nister M . Explaining the biological activity of transactivation-deficient p53 variants. Nat Genet 2006; 38: 395–396 author reply 6–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Tom Misteli for the pDsRed-I-SceI-GR vector. This work was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe No. 107889 to JDD and No. 107980 to ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Dahm-Daphi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieckmann, T., Kriegs, M., Nitsch, L. et al. p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation. Oncogene 32, 968–975 (2013). https://doi.org/10.1038/onc.2012.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.123

Keywords

This article is cited by

Search

Quick links