Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Kaposi's sarcoma herpesvirus lytic replication compromises apoptotic response to p53 reactivation in virus-induced lymphomas

Abstract

Primary effusion lymphomas (PELs) are aggressive Kaposi's sarcoma herpesvirus (KSHV)-induced malignancies with median survival time <6 months post-diagnosis. Mutations in the TP53 gene seldom occur in PELs, suggesting that genetic alterations in the TP53 are not selected during PEL progression. We have reported that p53 reactivation by an inhibitor of the p53–MDM2 interaction, Nutlin-3, induces selective and massive apoptosis in PEL cells leading to efficient anti-tumor activity in a subcutaneous xenograft model for PEL. Here, we show compelling anti-tumor activity of Nutlin-3 in the majority of intraperitoneal PEL xenografts in vivo. Interestingly, our results demonstrate that spontaneous induction of viral lytic replication in tumors could drastically attenuate the p53-dependent apoptotic response to Nutlin-3. Moreover, viral reactivation compromised p53-dependent apoptosis in PEL cells treated with genotoxic anti-cancer agents doxorubicin and etoposide. We have recently demonstrated that the Ser/Thr kinases Pim 1 and 3 are required to trigger induction of the lytic replication cascade of KSHV. We have now assessed the ability of a novel Pim kinase inhibitor to restore the Nutlin-3-induced cytotoxicity in lytic PEL cells. PEL cells induced to lytic replication by phorbol esters showed 50% inhibition of active viral replication following treatment with the Pim kinase inhibitor. Importantly, co-treatment of these cells with the kinase inhibitor and Nutlin-3 resulted in a robust restoration of the Nutlin-3-induced cell death. These results highlight the potential impact of activation of viral lytic replication on disease progression and response to treatment in KSHV-induced lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ablashi DV, Chatlynne LG, Whitman Jr JE, Cesarman E . Spectrum of Kaposi's sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin Microbiol Rev 2002; 15: 439–464.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Sald J et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood 1996; 88: 645–656.

    CAS  PubMed  Google Scholar 

  3. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 1996; 149: 53–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  5. Casper C . New approaches to the treatment of human herpesvirus 8-associated disease. Rev Med Virol 2008; 18: 321–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boulanger E, Gerard L, Gabarre J, Molina JM, Rapp C, Abino JF et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 2005; 23: 4372–4380.

    Article  PubMed  Google Scholar 

  7. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  8. Kubbutat MH, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  9. Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 1993; 53: 2231–2234.

    CAS  PubMed  Google Scholar 

  10. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  11. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006; 103: 1888–1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stuhmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H, Gerecke C et al. Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005; 106: 3609–3617.

    Article  PubMed  Google Scholar 

  14. Carbone A, Cilia AM, Gloghini A, Capello D, Todesco M, Quattrone S et al. Establishment and characterization of EBV-positive and EBV-negative primary effusion lymphoma cell lines harbouring human herpesvirus type-8. Br J Haematol 1998; 102: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  15. Sarek G, Kurki S, Enback J, Iotzova G, Haas J, Laakkonen P et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 2007; 117: 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E, Schattner EJ et al. NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 2006; 107: 3295–3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G . A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 1998; 95: 10866–10871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandran B, Bloomer C, Chan SR, Zhu L, Goldstein E, Horvat R . Human herpesvirus-8 ORF K8.1 gene encodes immunogenic glycoproteins generated by spliced transcripts. Virology 1998; 249: 140–149.

    Article  CAS  PubMed  Google Scholar 

  19. Keller SA, Schattner EJ, Cesarman E . Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 2000; 96: 2537–2542.

    CAS  PubMed  Google Scholar 

  20. Grossmann C, Ganem D . Effects of NFkappaB activation on KSHV latency and lytic reactivation are complex and context-dependent. Virology 2008; 375: 94–102.

    Article  CAS  PubMed  Google Scholar 

  21. Scott ML, Fujita T, Liou HC, Nolan GP, Baltimore D . The p65 subunit of NF-kappa B regulates I kappa B by two distinct mechanisms. Genes Dev 1993; 7: 1266–1276.

    Article  CAS  PubMed  Google Scholar 

  22. Morotti A, Cilloni D, Pautasso M, Messa F, Arruga F, Defilippi I et al. NF-kB inhibition as a strategy to enhance etoposide-induced apoptosis in K562 cell line. Am J Hematol 2006; 81: 938–945.

    Article  CAS  PubMed  Google Scholar 

  23. Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, Tosato G et al. Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 2001; 97: 3244–3250.

    Article  CAS  PubMed  Google Scholar 

  24. Haque M, Davis DA, Wang V, Widmer I, Yarchoan R . Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 2003; 77: 6761–6768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 2001; 61: 6394–6399.

    CAS  PubMed  Google Scholar 

  26. Boulanger E, Daniel MT, Agbalika F, Oksenhendler E . Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol 2003; 73: 143–148.

    Article  CAS  PubMed  Google Scholar 

  27. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, Gloghini A et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol 2003; 21: 3948–3954.

    Article  PubMed  Google Scholar 

  28. Qin Z, Dai L, Bratoeva M, Slomiany MG, Toole BP, Parsons C . Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma. Leukemia 2011; 25: 1598–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wies E, Hahn AS, Schmidt K, Viebahn C, Rohland N, Lux A et al. The Kaposi's sarcoma-associated Herpesvirus-encoded vIRF-3 inhibits cellular IRF-5. J Biol Chem 2009; 284: 8525–8538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU . Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 2003; 77: 4205–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petre CE, Sin SH, Dittmer DP . Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2007; 81: 1912–1922.

    Article  CAS  PubMed  Google Scholar 

  32. Kedes DH, Ganem D . Sensitivity of Kaposi's sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. J Clin Invest 1997; 99: 2082–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis DA, Singer KE, Reynolds IP, Haque M, Yarchoan R . Hypoxia enhances the phosphorylation and cytotoxicity of ganciclovir and zidovudine in Kaposi's sarcoma-associated herpesvirus infected cells. Cancer Res 2007; 67: 7003–7010.

    Article  CAS  PubMed  Google Scholar 

  34. Matthews T, Boehme R . Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 1988; 10 (Suppl 3): S490–S494.

    Article  CAS  PubMed  Google Scholar 

  35. Lalezari JP, Stagg RJ, Jaffe HS, Hitchcock MJ, Drew WL . A preclinical and clinical overview of the nucleotide-based antiviral agent cidofovir (HPMPC). Adv Exp Med Biol 1996; 394: 105–115.

    Article  CAS  PubMed  Google Scholar 

  36. Nicholas J . Human gammaherpesvirus cytokines and chemokine receptors. J Interferon Cytokine Res 2005; 25: 373–383.

    Article  CAS  PubMed  Google Scholar 

  37. Varjosalo M, Bjorklund M, Cheng F, Syvanen H, Kivioja T, Kilpinen S et al. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 2008; 133: 537–548.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng F, Weidner-Glunde M, Varjosalo M, Rainio EM, Lehtonen A, Schulz TF et al. KSHV reactivation from latency requires Pim-1 and Pim-3 kinases to inactivate the latency-associated nuclear antigen LANA. PLoS Pathog 2009; 5: e1000324.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Akue-Gedu R, Rossignol E, Azzaro S, Knapp S, Filippakopoulos P, Bullock AN et al. Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors. J Med Chem 2009; 52: 6369–6381.

    Article  CAS  PubMed  Google Scholar 

  40. Santio NM, Vahakoski RL, Rainio EM, Sandholm JA, Virtanen SS, Prudhomme M et al. Pim-selective inhibitor DHPCC-9 reveals Pim kinases as potent stimulators of cancer cell migration and invasion. Mol Cancer 2010; 9: 279.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brown HJ, McBride WH, Zack JA, Sun R . Prostratin and bortezomib are novel inducers of latent Kaposi's sarcoma-associated herpesvirus. Antivir Ther 2005; 10: 745–751.

    CAS  PubMed  Google Scholar 

  42. Dittmer DP . Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res 2003; 63: 2010–2015.

    CAS  PubMed  Google Scholar 

  43. Ganem D . KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 2006; 1: 273–296.

    CAS  PubMed  Google Scholar 

  44. Crum-Cianflone NF, Wallace MR, Looney D . Successful secondary prophylaxis for primary effusion lymphoma with human herpesvirus 8 therapy. Aids 2006; 20: 1567–1569.

    Article  PubMed  Google Scholar 

  45. Hocqueloux L, Agbalika F, Oksenhendler E, Molina JM . Long-term remission of an AIDS-related primary effusion lymphoma with antiviral therapy. Aids 2001; 15: 280–282.

    Article  CAS  PubMed  Google Scholar 

  46. Luppi M, Trovato R, Barozzi P, Vallisa D, Rossi G, Re A et al. Treatment of herpesvirus associated primary effusion lymphoma with intracavity cidofovir. Leukemia 2005; 19: 473–476.

    Article  CAS  PubMed  Google Scholar 

  47. Katano H, Sato Y, Kurata T, Mori S, Sata T . Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi's sarcoma, and multicentric Castleman's disease. Virology 2000; 269: 335–344.

    Article  CAS  PubMed  Google Scholar 

  48. Sarek G, Jarviluoma A, Ojala PM . KSHV viral cyclin inactivates p27KIP1 through Ser10 and Thr187 phosphorylation in proliferating primary effusion lymphomas. Blood 2006; 107: 725–732.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Laiho for reagents, discussions and critical review of this manuscript; C Boshoff for valuable comments; E Cesarman for providing the BC-3/NF-κB-luc cell line; D Ganem for anti-RTA antibody; and B Chandran for anti-ORF59 and anti-LANA antibodies. J Bärlund, S Vartia and P Kivinen are acknowledged for excellent technical assistance. This work was supported by grants from the Academy of Finland (PMO, PL), Finnish Cancer Foundations (PMO, PL), Sigrid Juselius Foundation (PMO), University of Helsinki Foundations (PMO), and from the European Union (FP6 INCA project LSHC-CT-2005-018704) to PMO, AJ, GS and LM were supported by the University of Helsinki Graduate Program in Biotechnology and Molecular Biology. JE was supported by the Helsinki Biomedical Graduate School. GS was also supported by Finnish Cultural Foundation, Paulo Foundation, K Albin Johansson Foundation, Maud Kuistila Memorial Foundation, University of Helsinki Funds and Biomedicum Helsinki Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Laakkonen or P M Ojala.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarek, G., Ma, L., Enbäck, J. et al. Kaposi's sarcoma herpesvirus lytic replication compromises apoptotic response to p53 reactivation in virus-induced lymphomas. Oncogene 32, 1091–1098 (2013). https://doi.org/10.1038/onc.2012.118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.118

Keywords

This article is cited by

Search

Quick links