Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Anti-oncogenic potential of the eIF4E-binding proteins

Abstract

The eIF4E-binding proteins (4E-BPs) are inhibitors of protein synthesis that sequester the mRNA cap-binding protein eIF4E and consequently block cell growth and proliferation. In most tumors however, their inhibitory function is compromised by major oncogenic signaling pathways. Recently, thanks to the generation of mouse genetic models, considerable progress has been made in elucidating the involvement of 4E-BPs and their unique target, eIF4E, in the process of carcinogenesis. Increasing evidence indicates that an ‘addiction’ to protein synthesis emerges in cancer cells, highlighting the potential that 4E-BPs have as targets for therapeutics. In this review, we summarize the biochemical function, regulation and anti-oncogenic activity of the 4E-BPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rom E, Kim HC, Gingras AC, Marcotrigiano J, Favre D, Olsen H et al. Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein. J Biol Chem 1998; 273: 13104–13109.

    Article  CAS  PubMed  Google Scholar 

  3. Joshi B, Cameron A, Jagus R . Characterization of mammalian eIF4E-family members. Eur J Biochem 2004; 271: 2189–2203.

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen PJ, Trachsel H . The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J 1998; 7: 2097–2105.

    Article  Google Scholar 

  5. Holzmann K, Gerner C, Pöltl A, Schäfer R, Obrist P, Ensinger C et al. A human common nuclear matrix protein homologous to eukaryotic translation initiation factor 4A. Biochem Biophys Res Commun 2000; 267: 339–344.

    Article  CAS  PubMed  Google Scholar 

  6. Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S et al. A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 1998; 18: 334–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Q, Imataka H, Morino S, Rogers GW, Richter-Cook NJ, Merrick WC et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol Cell Biol 1999; 19: 7336–7346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferraiuolo MA, Lee CS, Ler LW, Hsu JL, Costa-Mattioli M, Luo MJ et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci USA 2004; 101: 4118–4123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palacios IM, Gatfield D, Johnston D, Izaurralde E . An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 2004; 427: 753–757.

    Article  CAS  PubMed  Google Scholar 

  10. Caron S, Charon M, Cramer E, Sonenberg N, Dusanter-Fourt I . Selective modification of eukaryotic initiation factor 4F (eIF4F) at the onset of cell differentiation: recruitment of eIF4GII and long-lasting phosphorylation of eIF4E. Mol Cell Biol 2004; 24: 4920–4928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lazaris-Karatzas A, Montine KS, Sonenberg N . Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 1990; 345: 544–547.

    Article  CAS  PubMed  Google Scholar 

  12. Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Liu YL, Kung HF et al. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 1992; 6: 1631–1642.

    Article  CAS  PubMed  Google Scholar 

  13. Lazaris-Karatzas A, Sonenberg N . The mRNA 5' cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 1992; 12: 1234–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 1996; 16: 4754–4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lynch M, Chen L, Ravitz MJ, Mehtani S, Korenblat K, Pazin MJ et al. hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 2005; 25: 6436–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T et al. Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol 2009; 29: 1152–1162.

    Article  CAS  PubMed  Google Scholar 

  17. Murata T, Shimotohno K . Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem 2006; 281: 20788–20800.

    Article  CAS  PubMed  Google Scholar 

  18. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997; 16: 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R . Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 2004; 24: 6539–6549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ueda T, Sasaki M, Elia AJ, Chio, Hamada K, Fukunaga R et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA 2010; 107: 13984–13990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 2010; 107: 14134–14139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N . Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 1999; 18: 270–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pyronnet S . Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 2000; 60: 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  24. Orton KC, Ling J, Waskiewicz AJ, Cooper JA, Merrick WC, Korneeva NL et al. Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem 2004; 279: 38649–38657.

    Article  CAS  PubMed  Google Scholar 

  25. Shveygert M, Kaiser C, Bradrick SS, Gromeier M . Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol Cell Biol 2010; 30: 5160–5167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dobrikov M, Dobrikova E, Shveygert M, Gromeier M . Phosphorylation of eukaryotic translation initiation factor 4G1 (eIF4G1) by protein kinase C{alpha} regulates eIF4G1 binding to Mnk1. Mol Cell Biol 2011; 31: 2947–2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mader S, Lee H, Pause A, Sonenberg N . The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 1995; 15: 4990–4997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richter JD, Sonenberg N . Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005; 433: 477–480.

    Article  CAS  PubMed  Google Scholar 

  29. Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 1994; 266: 653–656.

    Article  CAS  PubMed  Google Scholar 

  30. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature 1994; 371: 762–767.

    Article  CAS  PubMed  Google Scholar 

  31. Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N . 4E-BP3 a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem 1998; 273: 14002–14007.

    Article  CAS  PubMed  Google Scholar 

  32. Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG . Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett 2002; 532: 319–323.

    Article  CAS  PubMed  Google Scholar 

  33. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999; 13: 1422–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 2001; 15: 2852–2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heesom KJ, Denton RM . Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett 1999; 457: 489–493.

    Article  CAS  PubMed  Google Scholar 

  36. Oulhen N, Boulben S, Bidinosti M, Morales J, Cormier P, Cosson B . A variant mimicking hyperphosphorylated 4E-BP inhibits protein synthesis in a sea urchin cell-free, cap-dependent translation system. PLoS One 2009; 4: e5070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gosselin P, Oulhen N, Jam M, Ronzca J, Cormier P, Czjzek M et al. The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Res 2011; 39: 3496–3503.

    Article  CAS  PubMed  Google Scholar 

  38. Paku KS, Umenaga Y, Usui T, Fukuyo A, Mizuno A, In Y et al. A conserved motif within the flexible C-terminus of the translational regulator 4E-BP is required for tight binding to the mRNA cap-binding protein eIF4E. Biochem J 2012; 441: 237–245.

    Article  CAS  PubMed  Google Scholar 

  39. Heesom KJ, Avison MB, Diggle TA, Denton RM . Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycin-insensitive site (serine-111). Biochem J 1998; 336: 39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Li W, Parra JL, Beugnet A, Proud CG . The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol 2003; 23: 1546–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brunn GJ, Hudson CC, Sekulić A, Williams JM, Hosoi H, Houghton PJ et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277: 99–101.

    Article  CAS  PubMed  Google Scholar 

  42. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM . RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 1998; 95: 1432–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schalm SS, Fingar DC, Sabatini DM, Blenis J . TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003; 13: 797–806.

    Article  CAS  PubMed  Google Scholar 

  44. Schalm SS, Blenis J . Identification of a conserved motif required for mTOR signaling. Curr Biol 2002; 12: 632–639.

    Article  CAS  PubMed  Google Scholar 

  45. Tee AR, Proud CG . Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 2002; 22: 1674–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi KM, McMahon LP, Lawrence JC . Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem 2003; 278: 19667–19673.

    Article  CAS  PubMed  Google Scholar 

  47. Beugnet A, Wang X, Proud CG . Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1. J Biol Chem 2003; 278: 40717–40722.

    Article  CAS  PubMed  Google Scholar 

  48. Lee VH, Healy T, Fonseca BD, Hayashi A, Proud CG . Analysis of the regulatory motifs in eukaryotic initiation factor 4E-binding protein 1. FEBS J 2008; 275: 2185–2199.

    Article  CAS  PubMed  Google Scholar 

  49. Pyronnet S, Sonenberg N . Cell-cycle-dependent translational control. Curr Opin Genet Dev 2001; 11: 13–18.

    Article  CAS  PubMed  Google Scholar 

  50. Heesom KJ, Gampel A, Mellor H, Denton RM . 2001. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 11: 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  51. Liu G, Zhang Y, Bode AM, Ma WY, Dong Z . Phosphorylation of 4E-BP1 is mediated by the p38/MSK1 pathway in response to UVB irradiation. J Biol Chem 2002; 277: 8810–8816.

    Article  CAS  PubMed  Google Scholar 

  52. Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 2005; 3: 443–451.

    Article  CAS  PubMed  Google Scholar 

  53. Gong J, Wang J, Ren K, Liu C, Li B, Shi Y . Serine/threonine kinase Pim-2 promotes liver tumorigenesis induction through mediating survival and preventing apoptosis of liver cell. J Surg Res 2009; 153: 17–22.

    Article  CAS  PubMed  Google Scholar 

  54. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood 2009; 114: 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  55. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003; 17: 1841–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nawijn MC, Alendar A, Berns A . For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011; 11: 23–34.

    Article  CAS  PubMed  Google Scholar 

  57. Yamaguchi S, Ishihara H, Yamada T, Tamura A, Usui M, Tominaga R et al. ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab 2008; 7: 269–276.

    Article  CAS  PubMed  Google Scholar 

  58. Azar R, Alard A, Susini C, Bousquet C, Pyronnet S . 4E-BP1 is a target of Smad4 essential for TGFbeta-mediated inhibition of cell proliferation. EMBO J 2009; 28: 3514–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rolli-Derkinderen M, Machavoine F, Baraban JM, Grolleau A, Beretta L, Dy M . ERK and p38 inhibit the expression of 4E-BP1 repressor of translation through induction of Egr-1. J Biol Chem 2003; 278: 18859–18867.

    Article  CAS  PubMed  Google Scholar 

  60. Azar R, Najib S, Lahlou H, Susini C, Pyronnet S . Phosphatidylinositol 3-kinase-dependent transcriptional silencing of the translational repressor 4E-BP1. Cell Mol Life Sci 2008; 65: 3110–3117.

    Article  CAS  PubMed  Google Scholar 

  61. Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY et al. MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 2009; 69: 7803–7810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Puig O, Marr MT, Ruhf ML, Tjian R . Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 2003; 17: 2006–2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teleman AA, Chen YW, Cohen SM . 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev 2005; 19: 1844–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF . Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev 2005; 19: 1840–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cormier P, Pyronnet S, Morales J, Mulner-Lorillon O, Sonenberg N, Bellé R . eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev Biol 2001; 232: 275–283.

    Article  CAS  PubMed  Google Scholar 

  66. Salaün P, Pyronnet S, Morales J, Mulner-Lorillon O, Bellé R, Sonenberg N et al. eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. Dev Biol 2003; 255: 428–439.

    Article  PubMed  CAS  Google Scholar 

  67. Le Bouffant R, Cormier P, Mulner-Lorillon O, Bellé R . Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP. J Cell Biochem 2006; 99: 126–132.

    Article  CAS  PubMed  Google Scholar 

  68. Tee AR, Proud CG . DNA-damaging agents cause inactivation of translationalregulators linked to mTOR signalling. Oncogene 2000; 19: 3021–3031.

    Article  CAS  PubMed  Google Scholar 

  69. Horton LE, Bushell M, Barth-Baus D, Tilleray VJ, Clemens MJ, Hensold JO . p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 2002; 21: 5325–5334.

    Article  CAS  PubMed  Google Scholar 

  70. Constantinou C, Clemens MJ . Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Oncogene 2005; 24: 4839–4850.

    Article  CAS  PubMed  Google Scholar 

  71. Constantinou C, Elia A, Clemens MJ . Activation of p53 stimulates proteasome-dependent truncation of eIF4E-binding protein 1 (4E-BP1). Biol Cell 2008; 100: 279–289.

    Article  CAS  PubMed  Google Scholar 

  72. Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004; 5: 553–563.

    Article  CAS  PubMed  Google Scholar 

  73. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010; 328: 1172–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010; 17: 249–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010; 18: 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jacobson BA, Alter MD, Kratzke MG, Frizelle SP, Zhang Y, Peterson MS et al. Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo. Cancer Res 2006; 66: 4256–4262.

    Article  CAS  PubMed  Google Scholar 

  77. Braunstein S, Badura ML, Xi Q, Formenti SC, Schneider RJ . Regulation of protein synthesis by ionizing radiation. Mol Cell Biol 2009; 29: 5645–5656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004; 10: 484–486.

    Article  CAS  PubMed  Google Scholar 

  79. Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell 2009; 16: 439–446.

    Article  CAS  PubMed  Google Scholar 

  80. Ilic N, Utermark T, Widlund HR, Roberts TM . PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA 2011; 108: E699–E708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 2007; 128: 257–267.

    Article  CAS  PubMed  Google Scholar 

  82. Cencic R, Hall DR, Robert F, Du Y, Min J, Li L et al. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc Natl Acad Sci USA 2011; 108: 1046–1051.

    Article  CAS  PubMed  Google Scholar 

  83. Blagden SP, Willis AE . The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 2011; 8: 280–291.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author’s work was supported by grants from La Ligue Contre le Cancer to SP, the Fondation pour la Recherche Médicale (FRM) Post-Doc fellow program (YM) and the Association pour la Recherche contre le Cancer (ARC) PhD fellow program (RA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Pyronnet.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martineau, Y., Azar, R., Bousquet, C. et al. Anti-oncogenic potential of the eIF4E-binding proteins. Oncogene 32, 671–677 (2013). https://doi.org/10.1038/onc.2012.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.116

Keywords

This article is cited by

Search

Quick links