Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor

Abstract

Ddx5 and ddx17 are two highly related RNA helicases involved in both transcription and splicing. These proteins coactivate transcription factors involved in cancer such as the estrogen receptor alpha, p53 and beta-catenin. Ddx5 and ddx17 are part of the splicing machinery and can modulate alternative splicing, the main mechanism increasing the proteome diversity. Alternative splicing also has a role in gene expression level regulation when it is coupled to the nonsense-mediated mRNA decay (NMD) pathway. In this work, we report that ddx5 and ddx17 have a dual role in the control of the pro-migratory NFAT5 transcription factor. First, ddx5 and ddx17 act as transcriptional coactivators of NFAT5 and are required for activating NFAT5 target genes involved in tumor cell migration. Second, at the splicing level, ddx5 and ddx17 increase the inclusion of NFAT5 exon 5. As exon 5 contains a pre-mature translation termination codon, its inclusion leads to the regulation of NFAT5 mRNAs by the NMD pathway and to a decrease in NFAT5 protein level. Therefore, we demonstrated for the first time that a transcriptional coregulator can simultaneously regulate the transcriptional activity and alternative splicing of a transcription factor. This dual regulation, where ddx5 and ddx17 enhance the transcriptional activity of NFAT5 although reducing its protein expression level, suggests a critical role for ddx5 and ddx17 in tumor cell migration through the fine regulation of NFAT5 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allemand E, Batsche E, Muchardt C . (2008). Splicing, transcription, and chromatin: a menage a trois. Curr Opin Genet Dev 18: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Auboeuf D, Batsche E, Dutertre M, Muchardt C, O'Malley BW . (2007). Coregulators: transducing signal from transcription to alternative splicing. Trends Endocrinol Metab 18: 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Auboeuf D, Honig A, Berget SM, O'Malley BW . (2002). Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298: 416–419.

    Article  CAS  PubMed  Google Scholar 

  • Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K et al. (2004). Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22: 2284–2293.

    Article  CAS  PubMed  Google Scholar 

  • Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE et al. (2002). NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 10: 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  • Barbier J, Dutertre M, Bittencourt D, Sanchez G, Gratadou L, de la Grange P et al. (2007). Regulation of H-ras splice variant expression by cross talk between the p53 and nonsense-mediated mRNA decay pathways. Mol Cell Biol 27: 7315–7333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J et al. (2005). The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. Embo J 24: 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS et al. (2004). Ultraconserved elements in the human genome. Science 304: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt D, Dutertre M, Sanchez G, Barbier J, Gratadou L, Auboeuf D . (2008). Cotranscriptional splicing potentiates the mRNA production from a subset of estradiol-stimulated genes. Mol Cell Biol 28: 5811–5824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blencowe BJ . (2003). Splicing regulation: the cell cycle connection. Curr Biol 13: R149–R151.

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Ferraris JD, Dmitrieva NI . (2007). Cellular response to hyperosmotic stresses. Physiol Rev 87: 1441–1474.

    Article  CAS  PubMed  Google Scholar 

  • Camats M, Guil S, Kokolo M, Bach-Elias M . (2008). P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS One 3: e2926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V et al. (2006). The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11: 547–560.

    Article  CAS  PubMed  Google Scholar 

  • Carter CL, Lin C, Liu CY, Yang L, Liu ZR . (2010). Phosphorylated p68 RNA helicase activates Snail1 transcription by promoting HDAC1 dissociation from the Snail1 promoter. Oncogene 29: 5427–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causevic M, Hislop RG, Kernohan NM, Carey FA, Kay RA, Steele RJ et al. (2001). Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20: 7734–7743.

    Article  CAS  PubMed  Google Scholar 

  • Chang YF, Chan WK, Imam JS, Wilkinson MF . (2007). Alternatively spliced T-cell receptor transcripts are up-regulated in response to disruption of either splicing elements or reading frame. J Biol Chem 282: 29738–29747.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sastry SK, O'Connor KL . (2011). Src kinase pathway is involved in NFAT5-mediated S100A4 induction by hyperosmotic stress in colon cancer cells. Am J Physiol Cell Physiol 300: C1155–C1163.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sinha M, Luxon BA, Bresnick AR, O'Connor KL . (2009). Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem 284: 1484–1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Schnetz MP, Irarrazabal CE, Shen RF, Williams CK, Burg MB et al. (2007). Proteomic identification of proteins associated with the osmoregulatory transcription factor TonEBP/OREBP: functional effects of Hsp90 and PARP-1. Am J Physiol Renal Physiol 292: F981–F992.

    Article  CAS  PubMed  Google Scholar 

  • Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK et al. (2002). Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16: 881–895.

    Article  CAS  PubMed  Google Scholar 

  • Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S et al. (2008). The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 68: 7938–7946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl SC, Handler JS, Kwon HM . (2001). Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP. Am J Physiol Cell Physiol 280: C248–C253.

    Article  CAS  PubMed  Google Scholar 

  • Dalski A, Hebinck A, Winking H, Butzmann U, Schwinger E, Zuhlke C . (2002). Complete cDNA sequence, expression, alternative splicing, and genomic organization of the mouse Nfat5 gene. Cytogenet Genome Res 97: 179–182.

    Article  CAS  PubMed  Google Scholar 

  • David CJ, Manley JL . (2010). Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24: 2343–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R . (1996). Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Oncogene 13: 1631–1637.

    CAS  PubMed  Google Scholar 

  • Dutertre M, Gratadou L, Dardenne E, Germann S, Samaan S, Lidereau R et al. (2010a). Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res 70: 3760–3770.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre M, Vagner S, Auboeuf D . (2010b). Alternative splicing and breast cancer. RNA Biol 7: 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Ferraris JD, Williams CK, Persaud P, Zhang Z, Chen Y, Burg MB . (2002). Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration. Proc Natl Acad Sci U S A 99: 739–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flower DR . (1994). The lipocalin protein family: a role in cell regulation. FEBS Lett 354: 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Fougere M, Gaudineau B, Barbier J, Guaddachi F, Feugeas JP, Auboeuf D et al. (2010). NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene. Oncogene 29: 2292–2301.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  PubMed  Google Scholar 

  • Fuller-Pace FV, Ali S . (2008). The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. Biochem Soc Trans 36: 609–612.

    Article  CAS  PubMed  Google Scholar 

  • Fuller-Pace FV, Moore HC . (2011). RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 7: 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Gardner LB . (2010). Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol Cancer Res 8: 295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett SC, Varney KM, Weber DJ, Bresnick AR . (2006). S100A4, a mediator of metastasis. J Biol Chem 281: 677–680.

    Article  CAS  PubMed  Google Scholar 

  • Guil S, Gattoni R, Carrascal M, Abian J, Stevenin J, Bach-Elias M . (2003). Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation. Mol Cell Biol 23: 2927–2941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Helfman DM, Kim EJ, Lukanidin E, Grigorian M . (2005). The metastasis associated protein S100A4: role in tumour progression and metastasis. Br J Cancer 92: 1955–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honig A, Auboeuf D, Parker MM, O'Malley BW, Berget SM . (2002). Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol Cell Biol 22: 5698–5707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irarrazabal CE, Gallazzini M, Schnetz MP, Kunin M, Simons BL, Williams CK et al. (2010). Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP. Proc Natl Acad Sci U S A 107: 906–911.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AM, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV . (2007). SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 26: 5866–5876.

    Article  CAS  PubMed  Google Scholar 

  • Janknecht R . (2010). Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am J Transl Res 2: 223–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A . (2002). The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4: 540–544.

    Article  CAS  PubMed  Google Scholar 

  • Kar A, Fushimi K, Zhou X, Ray P, Shi C, Chen X et al. (2011). RNA Helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol Cell Biol 31: 1812–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J et al. (2009). Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res 69: 8579–8584.

    Article  CAS  PubMed  Google Scholar 

  • Leng X, Wu Y, Arlinghaus RB . (2011). Relationships of lipocalin 2 with breast tumorigenesis and metastasis. J Cell Physiol 226: 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S et al. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell 40: 841–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Green RE, Brenner SE . (2003). Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100: 189–192.

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Bresnick AR . (2006). The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res 66: 5173–5180.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rodriguez C, Aramburu J, Jin L, Rakeman AS, Michino M, Rao A . (2001). Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15: 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Macian F . (2005). NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5: 472–484.

    Article  CAS  PubMed  Google Scholar 

  • Mancini M, Toker A . (2009). NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9: 810–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maouyo D, Kim JY, Lee SD, Wu Y, Woo SK, Kwon HM . (2002). Mouse TonEBP-NFAT5: expression in early development and alternative splicing. Am J Physiol Renal Physiol 282: F802–F809.

    Article  CAS  PubMed  Google Scholar 

  • McGlincy NJ, Smith CW . (2008). Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 33: 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Mooney SM, Goel A, D'Assoro AB, Salisbury JL, Janknecht R . (2010a). Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem 285: 30443–30452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney SM, Grande JP, Salisbury JL, Janknecht R . (2010b). Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Moore HC, Jordan LB, Bray SE, Baker L, Quinlan PR, Purdie CA et al. (2010). The RNA helicase p68 modulates expression and function of the Delta133 isoform(s) of p53, and is inversely associated with Delta133p53 expression in breast cancer. Oncogene 29: 6475–6484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller MR, Rao A . (2010). NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10: 645–656.

    Article  PubMed  Google Scholar 

  • Neu-Yilik G, Kulozik AE . (2008). NMD: multitasking between mRNA surveillance and modulation of gene expression. Adv Genet 62: 185–243.

    Article  CAS  PubMed  Google Scholar 

  • O'Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK . (2007). A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 120: 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Rossow KL, Janknecht R . (2003). Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Rossow KL, Grande JP, Janknecht R . (2007). Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res 67: 7572–7578.

    Article  CAS  PubMed  Google Scholar 

  • Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D et al. (2005). Function of alternative splicing. Gene 344: 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Warner DR, Bhattacherjee V, Yin X, Singh S, Mukhopadhyay P, Pisano MM et al. (2004). Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun 324: 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S et al. (2010). An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. Embo J 29: 3286–3300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y et al. (2001). A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. Embo J 20: 1341–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV . (2004). The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo SK, Dahl SC, Handler JS, Kwon HM . (2000). Bidirectional regulation of tonicity-responsive enhancer binding protein in response to changes in tonicity. Am J Physiol Renal Physiol 278: F1006–F1012.

    Article  CAS  PubMed  Google Scholar 

  • Wortham NC, Ahamed E, Nicol SM, Thomas RS, Periyasamy M, Jiang J et al. (2009). The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene 28: 4053–4064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL et al. (2009). Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A 106: 3913–3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Lin C, Liu ZR . (2005). Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 3: 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Liu ZR . (2006). P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127: 139–155.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Zhao S, Wang H, Liu ZR . (2007). Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up-regulating cyclin D1 and c-Myc expression. J Biol Chem 282: 16811–16819.

    Article  CAS  PubMed  Google Scholar 

  • Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A . (2005). Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 20: 539–550.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S Kato and J Marie for providing wild-type and mutant ddx5 and ddx17 expression vectors. We thank Emanuele Buratti for providing pTB minigene construct. We thank Coralie Poulard and Muriel Le Romancer-Cherifi for their help with PLA. This work was supported by EC (NoE EURASNET), Institut National du Cancer, Association pour la Recherche sur le Cancer, Ligue Nationale Contre le Cancer and Agence Nationale de la Recherche. S Germann, B Gaudineau and M Fougère were supported by Association pour la Recherche sur le Cancer; L Gratadou by Agence Nationale de la Recherche; E Zonta by the French Ministry of Education; E Dardenne by Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Auboeuf.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germann, S., Gratadou, L., Zonta, E. et al. Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 31, 4536–4549 (2012). https://doi.org/10.1038/onc.2011.618

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.618

Keywords

This article is cited by

Search

Quick links