Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers

Abstract

Microtubule-associated protein 1 light chain 3 has an important role in autophagy. The human LC3 gene family has five members, LC3A (variant-1: v1 and -2: v2), LC3B, LC3B2 and LC3C. Although a form of LC3B modified by phosphatidylethanolamine (form-II) is localized in autophagosomes, it is not clear whether other LC3 proteins also function in autophagy. Here, we examined the association between autophagy and human LC3 proteins during starvation- or p53-induced autophagy in Saos-2 cells. In an analysis of the intracellular distribution of each LC3 protein fused with GFP, GFP-LC3Av1 was frequently localized in autophagosomes with a punctate pattern, similar to GFP-LC3B. Further, endogenous LC3Av1 generated form-II and mostly localized in LC3B-positive autophagosomes during the induced autophagy. Interestingly, LC3Av1, not LC3B, was frequently inactivated at the transcriptional level in various human cancer cell lines (111/244 cell lines, 45.5%) and its inactivation was due to aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC) cell lines and primary tumors. Restoration of LC3Av1 expression in KYSE170 cells, an LC3Av1-inactivated ESCC cell line, showed the inhibition of tumor growth in vivo. These results suggest that LC3Av1, not only LC3B, functions in autophagy and further, LC3Av1 may be crucial in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bolte S, Cordelières FP . (2006). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213–232.

    Article  CAS  PubMed  Google Scholar 

  • Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L et al. (2008). Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn 237: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Cecconi F, Levine B . (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15: 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Faller EM, Villeneuve TS, Brown DL . (2009). MAP1a associated light chain 3 increases microtubule stability by suppressing microtubule dynamics. Mol Cell Neurosci 41: 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Fleming A, Noda T, Yoshimori T, Rubinsztein DC . (2011). Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7: 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Giatromanolaki A, Koukourakis MI, Harris AL, Polychronidis A, Gatter KC, Sivridis E . (2010). Prognostic relevance of light chain 3 (LC3A) autophagy patterns in colorectal adenocarcinomas. J Clin Pathol 63: 867–872.

    Article  PubMed  Google Scholar 

  • He H, Dang Y, Dai F, Guo Z, Wu J, She X et al. (2003). Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278: 29278–29287.

    Article  CAS  PubMed  Google Scholar 

  • Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al. (2011). Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193: 275–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue J, Misawa A, Tanaka Y, Ichinose S, Sugino Y, Hosoi H et al. (2011). Lysosomal-associated protein multispanning transmembrane 5 gene (LAPTM5) is associated with spontaneous regression of neuroblastomas. PLos One 4: e7099.

    Article  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T . (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117: 2805–2812.

    Article  CAS  PubMed  Google Scholar 

  • Karpathiou G, Sivridis E, Koukourakis M . (2010). LC3A autophagic acivity and prognostic significance in non-small cell lung carcinomas. Chest 140: 127–134.

    Article  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M . (2011). Potential role of p62 in tumor development. Autophagy 7: 1088–1090.

    Article  CAS  PubMed  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al. (2004). The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov SA, Gelfand IV . (1987). 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Lett 212: 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G . (2010). Autophagy regulation by p53. Curr Opin Cell Biol 22: 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Mann SS, Hammarback JA . (1994). Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 269: 11492–11497.

    CAS  PubMed  Google Scholar 

  • Mariño G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, López-Otín C . (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: 18573–18583.

    Article  PubMed  Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E . (2007). Role of autophagy in cancer. Nat Rev Cancer 7: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N . (2007). Autophagy: process and function. Genes Dev 21: 2861–2873.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ . (2008). Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein DC . (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Shvets E, Fass E, Scherz-Shouval R, Elazar Z . (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 121: 2685–2695.

    Article  CAS  PubMed  Google Scholar 

  • Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI . (2011). Autophagy in endometrial carcinomas and prognostic relevance of ‘stone-like’ structures (SLS): what is destined for the atypical endometrial hyperplasia? Autophagy 7: 74–82.

    Article  CAS  PubMed  Google Scholar 

  • Sivridis E, Giatromanolaki A, Zois C, Koukourakis MI . (2010b). The “stone-like” pattern of autophagy in human epithelial tumors and tumor-like lesions: an approach to the clinical outcome. Autophagy 6: 830–833.

    Article  PubMed  Google Scholar 

  • Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL et al. (2010a). LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am J Pathol 176: 2477–2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: 1142–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Ueno T, Kominami E . (2004). Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 279: 47704–47710.

    Article  CAS  PubMed  Google Scholar 

  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10: 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virgin HW, Levine B . (2009). Autophagy genes in immunity. Nat Immunol 10: 461–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Dang Y, Su W, Liu C, Ma H, Shan Y et al. (2006). Molecular cloning and characterization of rat LC3A and LC3B--two novel markers of autophagosome. Biochem Biophys Res Commun 339: 437–442.

    Article  CAS  PubMed  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8: 1124–1132.

    Article  CAS  PubMed  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N . (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077–15082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ayako Takahashi and Rumi Mori for technical assistance. This work is supported by Grant-in-Aid for Scientific Research on Priority Areas and Innovative Areas, young scientists (B) and a Global Center of Excellence (GCOE) Program from the Japanese Ministry of Education Core Research for Evolutional Science and Technology of Japan Science and Technology (JST) Corporation, and New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Inazawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website )

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, H., Inoue, J., Kawano, T. et al. A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers. Oncogene 31, 4397–4408 (2012). https://doi.org/10.1038/onc.2011.613

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.613

Keywords

This article is cited by

Search

Quick links