Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors

Abstract

Correlative data suggest that thyroid hormone receptor-β (TRβ) mutations could increase the risk of mammary tumor development, but unequivocal evidence is still lacking. To explore the role of TRβ mutants in vivo in breast tumor development and progression, we took advantage of a knock-in mouse model harboring a mutation in the Thrb gene encoding TRβ (ThrbPV mouse). Although in adult nulliparous females, a single ThrbPV allele did not contribute to mammary gland abnormalities, the presence of two ThrbPV alleles led to mammary hyperplasia in 36% ThrbPV/PV mice. The ThrbPV mutation further markedly augmented the risk of mammary hyperplasia in a mouse model with high susceptibility to mammary tumors (Pten+/− mouse), as demonstrated by the occurrence of mammary hyperplasia in 60% of ThrbPV/+Pten+/− and 77% of ThrbPV/PVPten+/− mice versus 33% of Thrb+/+Pten+/− mice. The ThrbPV mutation increased the activity of signal transducer and activator of transcription (STAT5) to increase cell proliferation and the expression of the STAT5 target gene encoding β-casein in the mammary gland. We next sought to understand the molecular mechanism underlying STAT5 overactivation by TRβPV. Cell-based studies with a breast cancer cell line (T47D cells) showed that thyroid hormone (T3) repressed STAT5 signaling in TRβ-expressing cells through decreasing STAT5-mediated transcription activity and target gene expression, whereas sustained STAT5 signaling was observed in TRβPV-expressing cells. Collectively, these findings show for the first time that a TRβ mutation promotes the development of mammary hyperplasia via aberrant activation of STAT5, thereby conferring a fertile genetic ground for tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agarwal DP, Soni TP, Sharma OP, Sharma S . (2007). Synchronous malignancies of breast and thyroid gland: a case report and review of literature. J Cancer Res Ther 3: 172–173.

    Article  PubMed  Google Scholar 

  • Alberg AJ, Helzlsouer KJ . (1997). Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 9: 505–511.

    Article  CAS  PubMed  Google Scholar 

  • Ali IU, Lidereau R, Callahan R . (1989). Presence of two members of c-erbA receptor gene family (c-erbA beta and c-erbA2) in smallest region of somatic homozygosity on chromosome 3p21-p25 in human breast carcinoma. J Natl Cancer Inst 81: 1815–1820.

    Article  CAS  PubMed  Google Scholar 

  • Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al. (2010). Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42: 454–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarado-Pisani AR, Chacon RS, Betancourt LJ, Lopez-Herrera L . (1986). Thyroid hormone receptors in human breast cancer: effect of thyroxine administration. Anticancer Res 6: 1347–1351.

    CAS  PubMed  Google Scholar 

  • Banneau G, Guedj M, MacGrogan G, de Mascarel I, Velasco V, Schiappa R et al. (2010). Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Res 12: R63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barash I . (2006). Stat5 in the mammary gland: controlling normal development and cancer. J Cell Physiol 209: 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Barlow C, Meister B, Lardelli M, Lendahl U, Vennstrom B . (1994). Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. EMBO J 13: 4241–4250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatson GT . (1896). On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. The Lancet 2: 162–165.

    Article  Google Scholar 

  • Brinton LA, Hoffman DA, Hoover R, Fraumeni Jr JF . (1984). Relationship of thyroid disease and use of thyroid supplements to breast cancer risk. J Chronic Dis 37: 877–893.

    Article  CAS  PubMed  Google Scholar 

  • Bronnegard M, Torring O, Boos J, Sylven C, Marcus C, Wallin G . (1994). Expression of thyrotropin receptor and thyroid hormone receptor messenger ribonucleic acid in normal, hyperplastic, and neoplastic human thyroid tissue. J Clin Endocrinol Metab 79: 384–389.

    CAS  PubMed  Google Scholar 

  • Conde I, Paniagua R, Zamora J, Blanquez MJ, Fraile B, Ruiz A et al. (2006). Influence of thyroid hormone receptors on breast cancer cell proliferation. Ann Oncol 17: 60–64.

    Article  CAS  PubMed  Google Scholar 

  • Conzen SD . (2008). Minireview: nuclear receptors and breast cancer. Mol Endocrinol 22: 2215–2228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA . (2004). Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 108: 665–671.

    Article  CAS  PubMed  Google Scholar 

  • Ditsch N, Liebhardt S, Von Koch F, Lenhard M, Vogeser M, Spitzweg C et al. (2010). Thyroid function in breast cancer patients. Anticancer Res 30: 1713–1717.

    CAS  PubMed  Google Scholar 

  • Eilon T, Groner B, Barash I . (2007). Tumors caused by overexpression and forced activation of Stat5 in mammary epithelial cells of transgenic mice are parity-dependent and developed in aged, postestropausal females. Int J Cancer 121: 1892–1902.

    Article  CAS  PubMed  Google Scholar 

  • Eng C . (2002). Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann N Y Acad Sci 968: 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Antico G, Zheng J, Clevenger CV . (2008). Quantification of PRL/Stat5 signaling with a novel pGL4-CISH reporter. BMC Biotechnol 8: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi S, la Vecchia C, Negri E, Parazzini F, Boyle P . (1990). Breast cancer risk and history of selected medical conditions linked with female hormones. Eur J Cancer 26: 781–785.

    Article  CAS  PubMed  Google Scholar 

  • Furumoto H, Ying H, Chandramouli GV, Zhao L, Walker RL, Meltzer PS et al. (2005). An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol Cell Biol 25: 124–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giani C, Fierabracci P, Bonacci R, Gigliotti A, Campani D, De Negri F et al. (1996). Relationship between breast cancer and thyroid disease: relevance of autoimmune thyroid disorders in breast malignancy. J Clin Endocrinol Metab 81: 990–994.

    CAS  PubMed  Google Scholar 

  • Goldman MB, Monson RR, Maloof F . (1992). Benign thyroid diseases and the risk of death from breast cancer. Oncology 49: 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Guigon CJ, Zhao L, Lu C, Willingham MC, Cheng SY . (2008). Regulation of beta-catenin by a novel nongenomic action of thyroid hormone beta receptor. Mol Cell Biol 28: 4598–4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigon CJ, Zhao L, Willingham MC, Cheng SY . (2009). PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene 28: 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Hayden TJ, Forsyth IA . (1997). Thyroid hormone binding in rat mammary gland. J Endocrinol 75: 38P–39P.

    Google Scholar 

  • Hedley AJ, Jones SJ, Spiegelhalter DJ, Clements P, Bewsher PD, Simpson JG et al. (1981). Breast cancer in thyroid disease: fact or fallacy? Lancet 1: 131–133.

    Article  CAS  PubMed  Google Scholar 

  • Iavnilovitch E, Cardiff RD, Groner B, Barash I . (2004). Deregulation of Stat5 expression and activation causes mammary tumors in transgenic mice. Int J Cancer 112: 607–619.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E . (2010). Cancer statistics, 2010. CA Cancer J Clin 60: 277–300.

    Article  PubMed  Google Scholar 

  • Kalache A, Vessey MP, McPherson K . (1982). Thyroid disease and breast cancer: findings in a large case-control study. Br J Surg 69: 434–435.

    Article  CAS  PubMed  Google Scholar 

  • Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA et al. (2000). Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97: 13209–13214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijpens JL, Nyklictek I, Louwman MW, Weetman TA, Pop VJ, Coebergh JW . (2005). Hypothyroidism might be related to breast cancer in post-menopausal women. Thyroid 15: 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  • Lemaire M, Baugnet-Mahieu L . (1986). Thyroid function in women with breast cancer. Eur J Cancer Clin Oncol 22: 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N et al. (2002a). Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129: 4159–4170.

    CAS  PubMed  Google Scholar 

  • Li Z, Meng ZH, Chandrasekaran R, Kuo WL, Collins CC, Gray JW et al. (2002b). Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. Cancer Res 62: 1939–1943.

    CAS  PubMed  Google Scholar 

  • Lin KH, Shieh HY, Chen SL, Hsu HC . (1999). Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog 26: 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J et al. (1997). Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet 61: 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manhes C, Kayser C, Bertheau P, Kelder B, Kopchick JJ, Kelly PA et al. (2006). Local over-expression of prolactin in differentiating mouse mammary gland induces functional defects and benign lesions, but no carcinoma. J Endocrinol 190: 271–285.

    Article  CAS  PubMed  Google Scholar 

  • Meier CA, Dickstein BM, Ashizawa K, McClaskey JH, Muchmore P, Ransom SC et al. (1992). Variable transcriptional activity and ligand binding of mutant beta 1 3,5,3’-triiodothyronine receptors from four families with generalized resistance to thyroid hormone. Mol Endocrinol 6: 248–258.

    CAS  PubMed  Google Scholar 

  • Mittra I . (1974). Mammotropic effect of prolactin enhanced by thyroidectomy. Nature 248: 525–526.

    Article  CAS  PubMed  Google Scholar 

  • Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H et al. (1997). Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11: 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD . (1991). Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two ‘hot spot’ regions of the ligand binding domain. J Clin Invest 88: 2123–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96: 1563–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J . (2002). Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 87: 1120–1128.

    Article  CAS  PubMed  Google Scholar 

  • Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J . (1997). Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res 57: 3657–3659.

    CAS  PubMed  Google Scholar 

  • Sap J, Munoz A, Schmitt J, Stunnenberg H, Vennstrom B . (1989). Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 340: 242–244.

    Article  CAS  PubMed  Google Scholar 

  • Saraiva PP, Figueiredo NB, Padovani CR, Brentani MM, Nogueira CR . (2005). Profile of thyroid hormones in breast cancer patients. Braz J Med Biol Res 38: 761–765.

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Dominguez G, Gonzalez-Sancho JM, Garcia JM, Silva J, Garcia-Andrade C et al. (2002). Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene 21: 4307–4316.

    Article  CAS  PubMed  Google Scholar 

  • Simon MS, Tang MT, Bernstein L, Norman SA, Weiss L, Burkman RT et al. (2002). Do thyroid disorders increase the risk of breast cancer? Cancer Epidemiol Biomarkers Prev 11: 1574–1578.

    PubMed  Google Scholar 

  • Smyth PP . (1993). Thyroid disease and breast cancer. J Endocrinol Invest 16: 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Smyth PP . (1997). The thyroid and breast cancer: a significant association? Ann Med 29: 189–191.

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW . (2000). High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res 60: 3605–3611.

    CAS  PubMed  Google Scholar 

  • Strain JJ, Bokje E, van't Veer P, Coulter J, Stewart C, Logan H et al. (1997). Thyroid hormones and selenium status in breast cancer. Nutr Cancer 27: 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Willingham MC, Cheng SY . (2002). Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12: 963–969.

    Article  CAS  PubMed  Google Scholar 

  • Takatani O, Okumoto T, Kosano H, Nishida M, Hiraide H, Tamakuma S . (1989). Relationship between the levels of serum thyroid hormones or estrogen status and the risk of breast cancer genesis in Japanese women. Cancer Res 49: 3109–3112.

    CAS  PubMed  Google Scholar 

  • Thormeyer D, Baniahmad A . (1999). The v-erbA oncogene (review). Int J Mol Med 4: 351–358.

    CAS  PubMed  Google Scholar 

  • Tosovic A, Bondeson AG, Bondeson L, Ericsson UB, Malm J, Manjer J . (2010). Prospectively measured triiodothyronine levels are positively associated with breast cancer risk in postmenopausal women. Breast Cancer Res 12: R33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turken O, NarIn Y, DemIrbas S, Onde ME, Sayan O, KandemIr EG et al. (2003). Breast cancer in association with thyroid disorders. Breast Cancer Res 5: R110–R113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkson J . (2004). STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8: 409–422.

    Article  CAS  PubMed  Google Scholar 

  • Vonderhaar BK . (1999). Prolactin involvement in breast cancer. Endocr Relat Cancer 6: 389–404.

    Article  CAS  PubMed  Google Scholar 

  • Wallin G, Bronnegard M, Grimelius L, McGuire J, Torring O . (1992). Expression of the thyroid hormone receptor, the oncogenes c-myc and H-ras, and the 90 kD heat shock protein in normal, hyperplastic, and neoplastic human thyroid tissue. Thyroid 2: 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Wennbo H, Kindblom J, Isaksson OG, Tornell J . (1997). Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology 138: 4410–4415.

    Article  CAS  PubMed  Google Scholar 

  • Wyszomierski SL, Yeh J, Rosen JM . (1999). Glucocorticoid receptor/signal transducer and activator of transcription 5 (STAT5) interactions enhance STAT5 activation by prolonging STAT5 DNA binding and tyrosine phosphorylation. Mol Endocrinol 13: 330–343.

    Article  CAS  PubMed  Google Scholar 

  • Yen PM . (2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097–1142.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Jones S, Hagood JS, Fuentes NL, Fuller GM . (1997). STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem 272: 30607–30610.

    Article  CAS  PubMed  Google Scholar 

  • Zumoff B, O'Connor J, Levin J, Markham M, Strain GW, Fukushima DK . (1981). Plasma levels of thyroxine and triiodothyronine in women with breast cancer. Anticancer Res 1: 287–291.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr L Fozzatti for her help in mouse dissection, Dr C Lu for taking mouse body pictures, and Drs B Vonderhaar and E Ginsburg for providing T47D cells and helpful technical advice. This research was supported by the Intramural Research Program of Center for Cancer Research, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-y Cheng.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guigon, C., Kim, D., Willingham, M. et al. Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors. Oncogene 30, 3381–3390 (2011). https://doi.org/10.1038/onc.2011.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.50

Keywords

This article is cited by

Search

Quick links