Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK

Abstract

Retinoic acid (RA) regulates several gene programs by nuclear RA receptors (RARs) that are ligand-dependent transcriptional transregulators. The basic mechanism for switching on transcription of cognate-target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes. In addition to these classical genomic effects, we recently demonstrated that RA also induces the rapid activation of the p38MAPK/MSK1 pathway, with characteristic downstream consequences on the phosphorylation of RARs and the expression of their target genes. Here, we aimed at deciphering the underlying mechanism of the rapid non-genomic effects of RA. We highlighted a novel paradigm in which a fraction of the cellular RARα pool is present in membrane lipid rafts, where it forms complexes with G protein alpha Q (Gαq) in response to RA. This rapid RA-induced formation of RARα/Gαq complexes in lipid rafts is required for the activation of p38MAPK that occurs in response to RA. Accordingly, in RA-resistant cancer cells, characterized by the absence of p38MAPK activation, RARα present in membrane lipid rafts does not associate with Gαq, pointing out the essential contribution of RARα/Gαq complexes in RA signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S et al. (2001). Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem 276: 4012–4019.

    Article  CAS  Google Scholar 

  • Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H . (2007). RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 6: 793–810.

    Article  CAS  Google Scholar 

  • Bastien J, Rochette-Egly C . (2004). Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328: 1–16.

    Article  CAS  Google Scholar 

  • Bour G, Gaillard E, Bruck N, Lalevee S, Plassat JL, Busso D et al. (2005). Cyclin H binding to the RAR{alpha} activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7. Proc Natl Acad Sci USA 102: 16608–16613.

    Article  CAS  Google Scholar 

  • Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de The H et al. (2009). A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARalpha to target promoters. EMBO J 28: 34–47.

    Article  CAS  Google Scholar 

  • Chen N, Napoli JL . (2008). All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 22: 236–245.

    Article  CAS  Google Scholar 

  • Clagett-Dame M, Knutson D . (2011). Vitamin A in reproduction and development. Nutrients 3: 385–428.

    Article  CAS  Google Scholar 

  • de Laurentiis A, Donovan L, Arcaro A . (2007). Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J 1: 12–32.

    Article  CAS  Google Scholar 

  • Dey N, De PK, Wang M, Zhang H, Dobrota EA, Robertson KA et al. (2007). CSK controls retinoic acid receptor (RAR) signaling: a RAR-c-SRC signaling axis is required for neuritogenic differentiation. Mol Cell Biol 27: 4179–4197.

    Article  CAS  Google Scholar 

  • Duong V, Rochette-Egly C . (2011). The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta 1812: 1023–1031.

    Article  CAS  Google Scholar 

  • Faria TN, Mendelsohn C, Chambon P, Gudas LJ . (1999). The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid-associated growth arrest. J Biol Chem 274: 26783–26788.

    Article  CAS  Google Scholar 

  • Gaub MP, Rochette-Egly C, Lutz Y, Ali S, Matthes H, Scheuer I et al. (1992). Immunodetection of multiple species of retinoic acid receptor alpha: evidence for phosphorylation. Exp Cell Res 201: 335–346.

    Article  CAS  Google Scholar 

  • Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M et al. (2006a). International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58: 712–725.

    Article  CAS  Google Scholar 

  • Germain P, Staels B, Dacquet C, Spedding M, Laudet V . (2006b). Overview of nomenclature of nuclear receptors. Pharmacol Rev 58: 685–704.

    Article  CAS  Google Scholar 

  • Gianni M, Bauer A, Garattini E, Chambon P, Rochette-Egly C . (2002). Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-indced RARγ degradation and transactivation. EMBO J 21: 3760–3769.

    Article  CAS  Google Scholar 

  • Gianni M, Parrella E, Raska I, Gaillard E, Nigro EA, Gaudon C et al. (2006). P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J 25: 739–751.

    Article  CAS  Google Scholar 

  • Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW . (2004). The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 18: 2660–2671.

    Article  CAS  Google Scholar 

  • Lai L, Yuan L, Chen Q, Dong C, Mao L, Rowan B et al. (2008). The G alpha i and G alpha q proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res 45: 476–488.

    Article  CAS  Google Scholar 

  • Laudet V, Gronemeyer H . (2001). Nuclear Receptor Factsbook. Academic Press: London.

    Google Scholar 

  • Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K et al. (2008). Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 31: 212–221.

    Article  CAS  Google Scholar 

  • Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B . (2005). Transcriptional activities of retinoic acid receptors. Vitam Horm 70: 199–264.

    Article  CAS  Google Scholar 

  • Losel R, Wehling M . (2003). Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4: 46–56.

    Article  Google Scholar 

  • Luoma JI, Boulware MI, Mermelstein PG . (2008). Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol 290: 8–13.

    Article  CAS  Google Scholar 

  • Marquez DC, Chen HW, Curran EM, Welshons WV, Pietras RJ . (2006). Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol Cell Endocrinol 246: 91–100.

    Article  CAS  Google Scholar 

  • Masia S, Alvarez S, de Lera AR, Barettino D . (2007). Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 21: 2391–2402.

    Article  CAS  Google Scholar 

  • Matthews L, Berry A, Ohanian V, Ohanian J, Garside H, Ray D . (2008). Caveolin mediates rapid glucocorticoid effects and couples glucocorticoid action to the antiproliferative program. Mol Endocrinol 22: 1320–1330.

    Article  CAS  Google Scholar 

  • Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M et al. (1998). Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17: 2008–2018.

    Article  CAS  Google Scholar 

  • Mizuno N, Itoh H . (2009). Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 17: 42–54.

    Article  CAS  Google Scholar 

  • Norman AW, Henry HL, Bishop JE, Song XD, Bula C, Okamura WH . (2001). Different shapes of the steroid hormone 1alpha,25(OH)(2)-vitamin D(3) act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses. Steroids 66: 147–158.

    Article  CAS  Google Scholar 

  • Norman AW, Mizwicki MT, Norman DP . (2004). Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3: 27–41.

    Article  CAS  Google Scholar 

  • Ordonez-Moran P, Larriba MJ, Palmer HG, Valero RA, Barbachano A, Dunach M et al. (2008). RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. J Cell Biol 183: 697–710.

    Article  CAS  Google Scholar 

  • Ostrom RS, Insel PA . (2006). Methods for the study of signaling molecules in membrane lipid rafts and caveolae. Methods Mol Biol 332: 181–191.

    CAS  PubMed  Google Scholar 

  • Pan J, Kao YL, Joshi S, Jeetendran S, Dipette D, Singh US . (2005). Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Neurochem 93: 571–583.

    Article  CAS  Google Scholar 

  • Park SS, Kim JE, Kim YA, Kim YC, Kim SW . (2005). Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology 47: 625–630.

    Article  Google Scholar 

  • Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER . (2007). A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282: 22278–22288.

    Article  CAS  Google Scholar 

  • Pike LJ . (2003). Lipid rafts: bringing order to chaos. J Lipid Res 44: 655–667.

    Article  CAS  Google Scholar 

  • Piskunov A, Rochette-Egly C . (2011). MSK1 and Nuclear Receptors Signaling. In: Vermeulen L and Arthur JSC (eds). MSKs. Landes Bioscience Books: Austin, TX, USA.

    Google Scholar 

  • Qiu J, Bosch MA, Tobias SC, Grandy DK, Scanlan TS, Ronnekleiv OK et al. (2003). Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J Neurosci 23: 9529–9540.

    Article  CAS  Google Scholar 

  • Rochette-Egly C, Germain P . (2009). Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors. Nucl Receptor Signaling 7: e005.

    Article  Google Scholar 

  • Rochette-Egly C, Plassat JL, Taneja R, Chambon P . (2000). The AF-1 and AF-2 activating domains of retinoic acid receptor-alpha (RARalpha) and their phosphorylation are differentially involved in parietal endodermal differentiation of F9 cells and retinoid-induced expression of target genes. Mol Endocrinol 14: 1398–1410.

    CAS  PubMed  Google Scholar 

  • Samarut E, Rochette-Egly C . (2011). Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol (e-pub ahead of print 8 April 2011).

  • Simons K, Toomre D . (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.

    Article  CAS  Google Scholar 

  • Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. (2006). Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3: 995–1000.

    Article  Google Scholar 

  • Staubach S, Hanisch FG . (2011). Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 8: 263–277.

    Article  CAS  Google Scholar 

  • Stuermer CA . (2011). Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116: 708–713.

    Article  CAS  Google Scholar 

  • Sugawara Y, Nishii H, Takahashi T, Yamauchi J, Mizuno N, Tago K et al. (2007). The lipid raft proteins flotillins/reggies interact with G alpha q and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase. Cell Signal 19: 1301–1308.

    Article  CAS  Google Scholar 

  • Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, Chambon P . (1997). Phosphorylation of activation functions AF-1 and AF-2 of RAR alpha and RAR gamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO J 16: 6452–6465.

    Article  CAS  Google Scholar 

  • Tari AM, Lim SJ, Hung MC, Esteva FJ, Lopez-Berestein G . (2002). Her2/neu induces all-trans retinoic acid (ATRA) resistance in breast cancer cells. Oncogene 21: 5224–5232.

    Article  CAS  Google Scholar 

  • Vasudevan N, Pfaff DW . (2008). Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 29: 238–257.

    Article  CAS  Google Scholar 

  • Waugh MG, Hsuan JJ . (2009). Preparation of membrane rafts. Methods Mol Biol 462: 403–414.

    CAS  PubMed  Google Scholar 

  • White CD, Coetsee M, Morgan K, Flanagan CA, Millar RP, Lu ZL . (2008). A crucial role for G alpha q/11, but not G alpha i/o or G alpha s, in gonadotropin-releasing hormone receptor-mediated cell growth inhibition. Mol Endocrinol 22: 2520–2530.

    Article  CAS  Google Scholar 

  • Yao Y, Hong S, Zhou H, Yuan T, Zeng R, Liao K . (2009). The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae. Cell Res 19: 497–506.

    Article  CAS  Google Scholar 

  • Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJ et al. (2008). Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro 22: 1205–1212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the cell culture facilities for their help and to all the members of the team for their helpful discussions and suggestions. Special thanks to Nathalie Bruck for GTPases analysis and to Regis Lutzing for generating the RARγWT MEF rescue line. This work was supported by funds from CNRS, INSERM, the Agence Nationale pour la Recherche (ANR-05-BLAN-0390-02 and ANR-09-BLAN-0297-01), the Association pour la Recherche sur le Cancer (ARC-07-1-3169), the Fondation pour la Recherche Médicale (DEQ20090515423) and the Institut National du Cancer (INCa-PL09-194 and PL07-96099). AP was supported by the Fondation pour la Recherche Médicale and by the Lady TATA Memorial Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Rochette-Egly.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piskunov, A., Rochette-Egly, C. A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK. Oncogene 31, 3333–3345 (2012). https://doi.org/10.1038/onc.2011.499

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.499

Keywords

This article is cited by

Search

Quick links