Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Standard of care therapy for malignant glioma and its effect on tumor and stromal cells

Abstract

Glioblastoma is the most common and deadly of the primary central nervous system tumors. Recent advances in molecular characterization have subdivided these tumors into at least three main groups. In addition, these tumors are cellularly complex with multiple stromal cell types contributing to the biology of the tumor and treatment response. Because essentially all glioma patients are treated with radiation, various chemotherapies and steroids, the tumor that finally kills them has been modified by these treatments. Most of the investigation of the effects of therapy on these tumors has focused on the glioma cells per se. However, despite the importance of the stromal cells in these tumors, little has been done to understand the effects of treatment on stromal cells and their contribution to disease. Understanding how current standard therapy affects the biology of the tumor and the tumor stroma may provide insight into the mechanisms that are important to the inhibition of tumor growth as well as the biology of recurrent tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Alterman RL, Stanley ER . (1994). Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol 21: 177–188.

    CAS  PubMed  Google Scholar 

  • Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA et al. (2010). TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18: 655–668.

    CAS  PubMed  Google Scholar 

  • Arko L, Katsyv I, Park GE, Luan WP, Park JK . (2010). Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 128: 1–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Florio T, Costa A, Schettini G . (1999a). Expression of chemokine receptors in the rat brain. Ann N Y Acad Sci 876: 201–209.

    CAS  PubMed  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Piccioli P, Costa A, Florio T et al. (1999b). Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73: 2348–2357.

    CAS  PubMed  Google Scholar 

  • Banissi C, Ghiringhelli F, Chen L, Carpentier AF . (2009). Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58: 1627–1634.

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al. (2006b). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66: 7843–7848.

    CAS  PubMed  Google Scholar 

  • Barbero S, Bajetto A, Bonavia R, Porcile C, Piccioli P, Pirani P et al. (2002). Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Ann N Y Acad Sci 973: 60–69.

    CAS  PubMed  Google Scholar 

  • Baron M . (2003). An overview of the Notch signalling pathway. Semin Cell Dev Biol 14: 113–119.

    CAS  PubMed  Google Scholar 

  • Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D . (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111: 1287–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betsholtz C . (2004). Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15: 215–228.

    CAS  PubMed  Google Scholar 

  • Bettinger I, Thanos S, Paulus W . (2002). Microglia promote glioma migration. Acta Neuropathologica 103: 351–355.

    PubMed  Google Scholar 

  • Bhattacharya S, Das A, Mallya K, Ahmad I . (2007). Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci 120: 2652–2662.

    CAS  PubMed  Google Scholar 

  • Bjarnegard M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A et al. (2004). Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131: 1847–1857.

    CAS  PubMed  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW et al. (2009). PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4: 226–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A et al. (2009). Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4: e7752.

    PubMed  PubMed Central  Google Scholar 

  • Cairncross JG, Macdonald DR, Pexman JH, Ives FJ . (1988). Steroid-induced CT changes in patients with recurrent malignant glioma. Neurology 38: 724–726.

    CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.

    CAS  PubMed  Google Scholar 

  • Cavaliere R, Lopes MB, Schiff D . (2005). Low-grade gliomas: an update on pathology and therapy. Lancet Neurol 4: 760–770.

    PubMed  Google Scholar 

  • Central Brain Tumor Registry of the United States. (2011). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004–2007.

  • Chang JY, Liu LZ . (2000). Inhibition of microglial nitric oxide production by hydrocortisone and glucocorticoid precursors. Neurochem Res 25: 903–908.

    CAS  PubMed  Google Scholar 

  • Charles N, Holland EC . (2009). Brain tumor treatment increases the number of cancer stem-like cells. Expert Rev Neurother 9: 1447–1449.

    PubMed  Google Scholar 

  • Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D et al. (2010). Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6: 141–152.

    CAS  PubMed  Google Scholar 

  • Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H . (2011). The brain tumor microenvironment. Glia 59: 1169–1180.

    PubMed  Google Scholar 

  • Chiang CS, McBride WH . (1991). Radiation enhances tumor necrosis factor alpha production by murine brain cells. Brain Res 566: 265–269.

    CAS  PubMed  Google Scholar 

  • Cleaver O, Melton DA . (2003). Endothelial signaling during development. Nat Med 9: 661–668.

    CAS  PubMed  Google Scholar 

  • Daginakatte GC, Gutmann DH . (2007). Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16: 1098–1112.

    CAS  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24: 909–969.

    CAS  PubMed  Google Scholar 

  • Dix AR, Brooks WH, Roszman TL, Morford LA . (1999). Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100: 216–232.

    CAS  PubMed  Google Scholar 

  • Ehrenkranz JRL, Posner JB (eds). (1980). Adrenocorticosteroid Hormones. C.K. Hall & Co.: Boston, MA.

    Google Scholar 

  • Eisenberg HM, Barlow CF, Lorenzo AV . (1970). Effect of dexamethasone on altered brain vascular permeability. Arch Neurol 23: 18–22.

    CAS  PubMed  Google Scholar 

  • El Andaloussi A, Han Y, Lesniak MS . (2006). Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105: 430–437.

    CAS  PubMed  Google Scholar 

  • Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N et al. (2002). Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21: 4307–4316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66: 7445–7452.

    CAS  PubMed  Google Scholar 

  • Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G et al. (2008). The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin -4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 51: 5522–5532.

    CAS  PubMed  Google Scholar 

  • Frederick L, Wang XY, Eley G, James CD . (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60: 1383–1387.

    CAS  PubMed  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21: 2683–2710.

    CAS  PubMed  Google Scholar 

  • Galicich JH, French LA . (1961). Use of dexamethasone in the treatment of cerebral edema resulting from brain tumors and brain surgery. Am Pract Dig Treat 12: 169–174.

    CAS  PubMed  Google Scholar 

  • Gallagher PG, Bao Y, Prorock A, Zigrino P, Nischt R, Politi V et al. (2005). Gene expression profiling reveals cross-talk between melanoma and fibroblasts: implications for host-tumor interactions in metastasis. Cancer Res 65: 4134–4146.

    CAS  PubMed  Google Scholar 

  • Ganter S, Northoff H, Mannel D, Gebicke-Harter PJ . (1992). Growth control of cultured microglia. J Neurosci Res 33: 218–230.

    CAS  PubMed  Google Scholar 

  • Gerhardt H, Betsholtz C . (2003). Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314: 15–23.

    PubMed  Google Scholar 

  • Goldstein LJ, Chen H, Bauer RJ, Bauer SM, Velazquez OC . (2005). Normal human fibroblasts enable melanoma cells to induce angiogenesis in type I collagen. Surgery 138: 439–449.

    PubMed  Google Scholar 

  • Gong X, Schwartz PH, Linskey ME, Bota DA . (2011). Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology 76: 1126–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber MB, Scheithauer BW, Kreutzberg GW . (2002). Microglia in brain tumors. Glia 40: 252–259.

    PubMed  Google Scholar 

  • Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P et al. (2007). CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121: 95–105.

    CAS  PubMed  Google Scholar 

  • Green SB, Byar DP, Walker MD, Pistenmaa DA, Alexander Jr E, Batzdorf U et al. (1983). Comparisons of carmustine, procarbazine, and high-dose methylprednisolone as additions to surgery and radiotherapy for the treatment of malignant glioma. Cancer Treat Rep 67: 121–132.

    CAS  PubMed  Google Scholar 

  • Gutin PH . (1975). Corticosteroid therapy in patients with cerebral tumors: benefits, mechanisms, problems, practicalities. Semin Oncol 2: 49–56.

    CAS  PubMed  Google Scholar 

  • Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC . (2008). PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22: 436–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hambardzumyan D, Parada LF, Holland EC, Charest A . (2011). Genetic modeling of gliomas in mice: New tools to tackle old problems. Glia 59: 1155–1168.

    PubMed  PubMed Central  Google Scholar 

  • Hanisch UK . (2002). Microglia as a source and target of cytokines. Glia 40: 140–155.

    PubMed  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003.

    CAS  PubMed  Google Scholar 

  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C . (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126: 3047–3055.

    CAS  PubMed  Google Scholar 

  • Hellstrom NA, Lindberg OR, Stahlberg A, Swanpalmer J, Pekny M, Blomgren K et al. (2011). Unique gene expression patterns indicate microglial contribution to neural stem cell recovery following irradiation. Mol Cell Neurosci 46: 710–719.

    PubMed  Google Scholar 

  • Hoelzinger DB, Demuth T, Berens ME . (2007). Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99: 1583–1593.

    CAS  PubMed  Google Scholar 

  • Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang XP, DeCarvalho AC et al. (2006). SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 236: 39–45.

    CAS  PubMed  Google Scholar 

  • Huse JT, Holland EC . (2010). Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev 10: 319–331.

    CAS  Google Scholar 

  • Huse JT, Phillips HS, Brennan CW . (2011). Molecular subclassification of diffuse gliomas: Seeing order in the chaos. Glia 59: 1190–1199.

    PubMed  Google Scholar 

  • Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A et al. (2008). Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68: 918–926.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SY, Jung JS, Kim TH, Lim SJ, Oh ES, Kim JY et al. (2006). Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis 21: 457–467.

    CAS  PubMed  Google Scholar 

  • Jain RK . (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62.

    CAS  PubMed  Google Scholar 

  • Jones TS, Holland EC . (2011). Molecular pathogenesis of malignant glial tumors. Toxicol Pathol 39: 158–166.

    PubMed  Google Scholar 

  • Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB . (2008). Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57: 123–131.

    CAS  PubMed  Google Scholar 

  • Kalm M, Fukuda A, Fukuda H, Ohrfelt A, Lannering B, Bjork-Eriksson T et al. (2009). Transient inflammation in neurogenic regions after irradiation of the developing brain. Radiat Res 171: 66–76.

    CAS  PubMed  Google Scholar 

  • Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG . (2005). Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7: 134–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F et al. (2011). Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108: 3749–3754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer R, Kreutzberg GW . (1991). Effects of dexamethasone on microglial activation in vivo: selective downregulation of major histocompatibility complex class II expression in regenerating facial nucleus. J Neuroimmunol 34: 99–108.

    CAS  PubMed  Google Scholar 

  • Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW . (2006). Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39: 339–345.

    CAS  PubMed  Google Scholar 

  • Kim JH, Min KJ, Seol W, Jou I, Joe EH . (2010). Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 115: 1161–1171.

    CAS  PubMed  Google Scholar 

  • Kim SH, Lim DJ, Chung YG, Cho TH, Lim SJ, Kim WJ et al. (2002). Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation. J Korean Med Sci 17: 242–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofman S, Garvin JS, Nagamani D, Taylor III SG . (1957). Treatment of cerebral metastases from breast carcinoma with prednisolone. J Am Med Assoc 163: 1473–1476.

    CAS  PubMed  Google Scholar 

  • Kureshi SA, Hofman FM, Schneider JH, Chin LS, Apuzzo ML, Hinton DR . (1994). Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery 35: 822–829; discussion 829–830.

    CAS  PubMed  Google Scholar 

  • Kyrkanides S, Olschowka JA, Williams JP, Hansen JT, O'Banion MK . (1999). TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. J Neuroimmunol 95: 95–106.

    CAS  PubMed  Google Scholar 

  • Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M et al. (2011). Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29: 142–148.

    CAS  PubMed  Google Scholar 

  • Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG et al. (2003). Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23: 4034–4043.

    PubMed  PubMed Central  Google Scholar 

  • Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA . (1999). Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13: 450–464.

    CAS  PubMed  Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H et al. (1985). Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147.

    CAS  PubMed  Google Scholar 

  • Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R et al. (2011). Effector T-Cell Infiltration Positively Impacts Survival of Glioblastoma Patients and Is Impaired by Tumor-Derived TGF-\{beta\}. Clin Cancer Res 17: 4296–4308.

    CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica 114: 97–109.

    PubMed  PubMed Central  Google Scholar 

  • Lu C, Shervington A . (2008). Chemoresistance in gliomas. Mol Cell Biochem 312: 71–80.

    CAS  PubMed  Google Scholar 

  • Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H . (2005). Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64: 754–762.

    CAS  PubMed  Google Scholar 

  • Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K et al. (2009). Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 106: 12530–12535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minghetti L, Levi G . (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54: 99–125.

    CAS  PubMed  Google Scholar 

  • Network CGAR . (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Google Scholar 

  • Okada M, Saio M, Kito Y, Ohe N, Yano H, Yoshimura S et al. (2009). Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 34: 1621–1627.

    CAS  PubMed  Google Scholar 

  • Ozerdem U, Stallcup WB . (2004). Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7: 269–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9: 157–173.

    CAS  PubMed  Google Scholar 

  • Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S et al. (2003). Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54: 388–392.

    CAS  PubMed  Google Scholar 

  • Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, Ferron SR, Aroca-Aguilar JD, Sanchez P et al. (2006). Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9: 331–339.

    CAS  PubMed  Google Scholar 

  • Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. (2006). Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 66: 867–874.

    CAS  PubMed  Google Scholar 

  • Rempel SA, Dudas S, Ge S, Gutierrez JA . (2000). Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6: 102–111.

    CAS  PubMed  Google Scholar 

  • Rong Y, Durden DL, Van Meir EG, Brat DJ . (2006). ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65: 529–539.

    PubMed  Google Scholar 

  • Rovit RL, Hagan R . (1968). Steroids and cerebral edema: the effects of glucocorticoids on abnormal capillary permeability following cerebral injury in cats. J Neuropathol Exp Neurol 27: 277–299.

    CAS  PubMed  Google Scholar 

  • Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T et al. (2000). Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett 157: 177–184.

    CAS  PubMed  Google Scholar 

  • Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M et al. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70–74.

    CAS  PubMed  Google Scholar 

  • Sciuscio D, Diserens AC, van Dommelen K, Martinet D, Jones G, Janzer RC et al. (2011). Extent and patterns of MGMT promoter methylation in glioblastoma- and respective glioblastoma-derived spheres. Clin Cancer Res 17: 255–266.

    CAS  PubMed  Google Scholar 

  • Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K et al. (2010). A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133: 983–995.

    PubMed  Google Scholar 

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466.

    CAS  PubMed  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S et al. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180.

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Funakoshi H, Machide M, Matsumoto K, Nakamura T . (2008). Regulation of cell migration and cytokine production by HGF-like protein (HLP) / macrophage stimulating protein (MSP) in primary microglia. Biomed Res 29: 77–84.

    CAS  PubMed  Google Scholar 

  • Suzumura A, Sawada M, Yamamoto H, Marunouchi T . (1993). Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151: 2150–2158.

    CAS  PubMed  Google Scholar 

  • Vairano M, Graziani G, Tentori L, Tringali G, Navarra P, Dello Russo C . (2004). Primary cultures of microglial cells for testing toxicity of anticancer drugs. Toxicol Lett 148: 91–94.

    CAS  PubMed  Google Scholar 

  • Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ . (2010). Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60: 166–193.

    PubMed  PubMed Central  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma S, Nakaoke R, Dohgu S, Banks WA . (2006). Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav Immun 20: 449–455.

    CAS  PubMed  Google Scholar 

  • Villeneuve J, Galarneau H, Beaudet MJ, Tremblay P, Chernomoretz A, Vallieres L . (2008). Reduced glioma growth following dexamethasone or anti-angiopoietin 2 treatment. Brain Pathol 18: 401–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Virrey JJ, Golden EB, Sivakumar W, Wang W, Pen L, Schonthal AH et al. (2009). Glioma-associated endothelial cells are chemoresistant to temozolomide. J Neurooncol 95: 13–22.

    CAS  PubMed  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al. (2010). Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468: 829–833.

    CAS  PubMed  Google Scholar 

  • Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS et al. (2009). Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69: 2400–2407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watling CJ, Lee DH, Macdonald DR, Cairncross JG . (1994). Corticosteroid-induced magnetic resonance imaging changes in patients with recurrent malignant glioma. J Clin Oncol 12: 1886–1889.

    CAS  PubMed  Google Scholar 

  • Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA et al. (2004). IL-6 is required for glioma development in a mouse model. Oncogene 23: 3308–3316.

    CAS  PubMed  Google Scholar 

  • Wen PY, Kesari S . (2008). Malignant gliomas in adults. N Engl J Med 359: 492–507.

    CAS  PubMed  Google Scholar 

  • Wiesenhofer B, Weis C, Humpel C . (2000). Glial cell line-derived neurotrophic factor (GDNF) is a proliferation factor for rat C6 glioma cells: evidence from antisense experiments. Antisense Nucleic Acid Drug Dev 10: 311–321.

    CAS  PubMed  Google Scholar 

  • Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M et al. (2006). Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103: 17513–17518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS et al. (1992). Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89: 2965–2969.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W et al. (2010). Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12: 1113–1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Wang S, Jiang X, Zhao Y, Gao M, Zhang Y et al. (2007). Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro. Clin Exp Pharmacol Physiol 34: 624–631.

    CAS  PubMed  Google Scholar 

  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. (2009). IDH1 and IDH2 mutations in gliomas. N Engl J Med 360: 765–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh WL, Lu DY, Liou HC, Fu WM . (2011). A forward loop between glioma and microglia: Glioma-derived extracellular matrix-activated microglia secrete IL-18 to enhance the migration of glioma cells. J Cell Physiol (e-pub ahead of print).

  • Zhou Y, Larsen PH, Hao C, Yong VW . (2002). CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277: 49481–49487.

    CAS  PubMed  Google Scholar 

  • Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R et al. (2009). Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 106: 2712–2716.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S et al. (2009). Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91: 329–336.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the NIH grants RO1 CA100688, U54 CA126518-01, U01 CA141502-01 and U54 CA143798.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T S Jones or E C Holland.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, T., Holland, E. Standard of care therapy for malignant glioma and its effect on tumor and stromal cells. Oncogene 31, 1995–2006 (2012). https://doi.org/10.1038/onc.2011.398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.398

Keywords

This article is cited by

Search

Quick links