Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma

Abstract

Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion products that are tumor driving. To identify such events we analyzed a series of neuroblastomas by comparative genomic hybridization and single-nucleotide polymorphism arrays and integrated these data with Affymetrix mRNA profiling data with the bioinformatic tool R2 (http://r2.amc.nl). We identified three neuroblastoma samples with small interstitial deletions at 11q23, upstream of the forkhead-box R1 transcription factor (FOXR1). Genes at the proximal side of the deletion were fused to FOXR1, resulting in fusion transcripts of MLL–FOXR1 and PAFAH1B2–FOXR1. FOXR1 expression has only been detected in early embryogenesis. Affymetrix microarray analysis showed high FOXR1 mRNA expression exclusively in the neuroblastomas with micro-deletions and rare cases of other tumor types, including osteosarcoma cell line HOS. RNAi silencing of FOXR1 strongly inhibited proliferation of HOS cells and triggered apoptosis. Expression profiling of these cells and reporter assays suggested that FOXR1 is a negative regulator of fork-head box factor-mediated transcription. The neural crest stem cell line JoMa1 proliferates in culture conditional to activity of a MYC-ER transgene. Over-expression of the wild-type FOXR1 could functionally replace MYC and drive proliferation of JoMa1. We conclude that FOXR1 is recurrently activated in neuroblastoma by intrachromosomal deletion/fusion events, resulting in overexpression of fusion transcripts. Forkhead-box transcription factors have not been previously implicated in neuroblastoma pathogenesis. Furthermore, this is the first identification of intrachromosomal fusion genes in neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A et al. (2010). Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res 16: 2971–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I et al. (2010). FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18: 592–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM et al. (2008). A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6: 735–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG . (1994). Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54: 2869–2872.

    CAS  PubMed  Google Scholar 

  • Furuyama T, Nakazawa T, Nakano I, Mori N . (2000). Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher III FJ, Emanuel BS et al. (1993). Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5: 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Ferrería MA, Rey-Campos J . (2003). Functional domains of FOXJ2. J Mol Biol 329: 631–644.

    Article  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, He W, Wang Q, Seoane J, Lash A et al. (2006). A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci USA 103: 12747–12752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO et al. (1999). Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18: 4948–4957.

    Article  CAS  PubMed  Google Scholar 

  • Hampton GM, Mannermaa A, Winqvist R, Alavaikko M, Blanco G, Taskinen PJ et al. (1994). Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Res 54: 4586–4589.

    CAS  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De PA, Speleman F, Vandesompele J . (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8: R19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoeller S, Schneider A, Haralambieva E, Dirnhofer S, Tzankov A . (2010). FOXP1 protein overexpression is associated with inferior outcome in nodal diffuse large B-cell lymphomas with non-germinal centre phenotype, independent of gains and structural aberrations at 3p14.1. Histopathology 57: 73–80.

    Article  PubMed  Google Scholar 

  • Katoh M, Katoh M . (2004a). Germ-line mutation of Foxn5 gene in mouse lineage. Int J Mol Med 14: 463–467.

    CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M . (2004b). Identification and characterization of human FOXN6, mouse Foxn6, and rat Foxn6 genes in silico. Int J Oncol 25: 219–223.

    CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M . (2004c). Identification and characterization of human FOXN5 and rat Foxn5 genes in silico. Int J Oncol 24: 1339–1344.

    CAS  PubMed  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. (2002). The human genome browser at UCSC. Genome Res 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS, Seo YC, Chang A, Tohari S, Eu KW, Seow-Choen F et al. (2000). Detailed deletion mapping at chromosome 11q23 in colorectal carcinoma. Br J Cancer 83: 750–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefever S, Vandesompele J, Speleman F, Pattyn F . (2009). RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res 37: D942–D945.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng EH, Hsieh JJ . (2009). MLL fusions: pathways to leukemia. Cancer Biol Ther 8: 1204–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony S, Benos PV . (2007). STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35: W253–W258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez MJ, Smith AD, Li B, Zhang MQ, Harrod KS . (2007). Computational prediction of novel components of lung transcriptional networks. Bioinformatics 23: 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108–D110.

    Article  CAS  PubMed  Google Scholar 

  • Maurer J, Fuchs S, Jager R, Kurz B, Sommer L, Schorle H . (2007). Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis. Differentiation 75: 580–591.

    Article  CAS  PubMed  Google Scholar 

  • Myatt SS, Lam EW . (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7: 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Nowacki S, Skowron M, Oberthuer A, Fagin A, Voth H, Brors B et al. (2008). Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene 27: 3329–3338.

    Article  CAS  PubMed  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido HA, Fakruddin MJ, Chatterjee A, Esplin ED, Beleno N, Martinez G et al. (2000). Identification of a 6-cM minimal deletion at 11q23.1-23.2 and exclusion of PPP2R1B gene as a deletion target in cervical cancer. Cancer Res 60: 6677–6682.

    CAS  PubMed  Google Scholar 

  • Schones DE, Smith AD, Zhang MQ . (2007). Statistical significance of cis-regulatory modules. BMC Bioinformatics 8: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuff M, Rossner A, Donow C, Knochel W . (2006). Temporal and spatial expression patterns of FoxN genes in Xenopus laevis embryos. Int J Dev Biol 50: 429–434.

    Article  CAS  PubMed  Google Scholar 

  • Schüller U, Zhao Q, Godinho SA, Heine VM, Medema RH, Pellman D et al. (2007). Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol Cell Biol 27: 8259–8270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R et al. (2009). Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69: 2065–2071.

    Article  CAS  PubMed  Google Scholar 

  • So CW, Cleary ML . (2002). MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 22: 6542–6552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So CW, Cleary ML . (2003). Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 101: 633–639.

    Article  CAS  PubMed  Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al. (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168: 5024–5031.

    Article  CAS  PubMed  Google Scholar 

  • van Noesel MM, Versteeg R . (2004). Pediatric neuroblastomas: genetic and epigenetic ′danse macabre′. Gene 325: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen J, De PK, Naranjo A, Vercruysse L, Van RN, Hellemans J et al. (2009). Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol 10: 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K . (2008). DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res 36: D97–101.

    Article  CAS  PubMed  Google Scholar 

  • Wierstra I, Alves J . (2007). FOXM1, a typical proliferation-associated transcription factor. Biol Chem 388: 1257–1274.

    CAS  PubMed  Google Scholar 

  • Wlodarska I, Veyt E, De PP, Vandenberghe P, Nooijen P, Theate I et al. (2005). FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19: 1299–1305.

    Article  CAS  PubMed  Google Scholar 

  • Yuan TL, Cantley LC . (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stichting Koningin Wilhelmina Fonds (KWF), Stichting Kindergeneeskundig Kankeronderzoek (SKK) and the Stichting Kinderen Kankervrij (KiKa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Molenaar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santo, E., Ebus, M., Koster, J. et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma. Oncogene 31, 1571–1581 (2012). https://doi.org/10.1038/onc.2011.344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.344

Keywords

This article is cited by

Search

Quick links